Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?

Journal of the Science of Food and Agriculture - Tập 95 Số 2 - Trang 281-288 - 2015
Marie J. Zwetsloot1, Johannes Lehmann1, Dawit Solomon1
1Department of Crop and Soil Sciences Cornell University NY 14853 USA

Tóm tắt

AbstractBACKGROUNDPyrolysis of slaughterhouse waste could promote more sustainable phosphorus (P) usage through the development of alternative P fertilizers. This study investigated how pyrolysis temperature (220, 350, 550 and 750 °C), rendering before pyrolysis, and wood or corn biomass additions affect P chemistry in bone char, plant availability, and its potential as P fertilizer.RESULTSLinear combination fitting of synchrotron‐based X‐ray absorption near edge structure spectra demonstrated that higher pyrolysis temperatures decreased the fit with organic P references, but increased the fit with a hydroxyapatite (HA) reference, used as an indicator of high calcium phosphate (CaP) crystallinity. The fit to the HA reference increased from 0% to 69% in bone with meat residue and from 20% to 95% in rendered bone. Biomass additions to the bone with meat residue reduced the fit to the HA reference by 83% for wood and 95% for corn, and additions to rendered bone by 37% for wood. No detectable aromatic P forms were generated by pyrolysis. High CaP crystallinity was correlated with low water‐extractable P, but high formic acid‐extractable P indicative of high plant availability. Bone char supplied available P which was only 24% lower than Triple Superphosphate fertilizer and two‐ to five‐fold higher than rock phosphate.CONCLUSIONPyrolysis temperature and biomass additions can be used to design P fertilizer characteristics of bone char through changing CaP crystallinity that optimize P availability to plants. © 2014 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

10.1002/jsfa.4650

10.1126/science.283.5410.2015

10.1016/j.gloenvcha.2008.10.009

10.1038/461716a

van Kauwenbergh SJ, 2013, World reserves of phosphate rock … a dynamic and unfolding story, Better Crops Plant Food, 97, 18

10.1146/annurev.energy.25.1.53

10.1126/science.1057544

10.1016/j.chemosphere.2011.02.032

10.1016/j.rser.2011.09.015

10.1111/j.1745-4565.1998.tb00220.x

10.1016/j.jhazmat.2005.02.003

10.1021/es026346m

10.1002/jbm.820190307

10.1016/j.msec.2005.01.008

10.2113/GSELEMENTS.3.6.385

10.1016/j.cej.2006.04.013

10.1016/j.jaap.2011.03.015

10.1016/S0165-2370(03)00044-5

10.1590/S0100-204X2012000500006

10.1016/j.resconrec.2011.06.005

10.1021/ef7003128

10.1007/s10705-008-9235-6

10.1016/j.soilbio.2007.09.010

10.2134/jeq2012.0363

Siebers N, 2012, The phosphorus fertilizer value of bone char for potatoes, wheat and onions: First results, Landbauforschung, 62, 59

10.1016/j.biombioe.2012.12.010

10.1007/s11104-012-1131-9

10.2134/jeq1999.00472425002800020018x

10.1007/s11368-011-0405-9

Nelson NO, 2011, Nitrogen and phosphorus availability in biochar‐amended, Soils Soil Sci, 176, 218, 10.1097/SS.0b013e3182171eac

10.1021/es0503130

10.1016/S0003-2670(00)88444-5

10.1007/BF01050366

10.2134/jeq2012.0033

10.1080/00103624.2012.656167

10.1107/S0909049505012719

10.1016/0016-7037(92)90322-A

10.1107/S0907444998005769

10.1016/S1385-8947(03)00044-5

10.1021/es025660d

10.2134/jeq2003.1809

10.1107/S0909049510045322

10.1016/0921-4526(95)00446-7

10.1016/j.marchem.2006.09.004

10.2134/jeq2005.0687

10.1177/10454411920030010601

10.1016/S0016-7061(03)00207-6

10.2136/sssaj1991.03615995005500030006x

10.1016/j.jcrysgro.2008.01.047

10.1007/s002239900277

10.1139/x85-022

DeLuca TH, 2009, Biochar for Environmental Management: Science and Technology, 251

10.1021/ef049944q

10.1016/j.apenergy.2010.08.011

10.1016/S0142-9612(01)00218-6

10.1007/s10705-007-9162-y

10.2136/sssaj1960.03615995002400030016x

10.2136/sssaj1960.03615995002400020010x

10.6028/jres.072A.052