Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea
Tóm tắt
Từ khóa
Tài liệu tham khảo
Maritorena, 1998, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res. Ocean., 103, 24937, 10.1029/98JC02160
Gower, 2014, A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans, Prog. Oceanogr., 123, 23
Klemas, 2011, Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview, J. Coast. Res., 27, 2
Wilson, 2011, The rocky road from research to operations for satellite ocean-colour data in fishery management, ICES J. Mar. Sci., 68, 677, 10.1093/icesjms/fsq168
Shen, 2012, Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework, Sensors (Switzerland), 12, 7778, 10.3390/s120607778
Nechad, 2011, Reconstruction of MODIS total suspended matter time series maps by DINEOF and validation with autonomous platform data, Ocean Dyn., 61, 1205, 10.1007/s10236-011-0425-4
Liu, X., and Wang, M. (2019). Filling the Gaps of Missing Data in the Merged VIIRS SNPP/NOAA-20 Ocean Color Product Using the DINEOF Method. Remote Sens., 11.
Chen, 2019, Improving ocean color data coverage through machine learning, Remote Sens. Environ., 222, 286, 10.1016/j.rse.2018.12.023
Jouini, 2013, Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method, Remote Sens. Environ., 131, 232, 10.1016/j.rse.2012.11.025
Jo, 2018, Chlorophyll Concentration Derived from Microwave Remote Sensing Measurements USING Artificial Neural Network Algorithm, J. Mar. Sci, 26, 102
Arrigo, 2004, Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica, Deep. Res. Part II Top. Stud. Oceanogr., 51, 117, 10.1016/j.dsr2.2003.04.003
Marrari, 2006, Validation of SeaWiFS chlorophyll a concentrations in the Southern Ocean: A revisit, Remote Sens. Environ., 105, 367, 10.1016/j.rse.2006.07.008
Alvera-Azcárate, A., Barth, A., Beckers, J.M., and Weisberg, R.H. (2007). Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J. Geophys. Res. Ocean., 112.
Barth, 2009, Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF, Ocean Sci., 5, 475, 10.5194/os-5-475-2009
Ruddick, 2010, Cloud filling of ocean colour and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions methodology, J. Sea Res., 65, 114
Volpe, 2012, Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations, Remote Sens. Environ., 117, 223, 10.1016/j.rse.2011.09.020
Wang, 2014, Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: A case study in the Bohai and Yellow seas, China, Int. J. Remote Sens., 35, 204, 10.1080/01431161.2013.866290
Zhao, 2012, Cloud-free sea surface temperature and colour reconstruction for the gulf of mexico: 2003–2009, Remote Sens. Lett., 3, 697, 10.1080/01431161.2012.666638
Vanhellemont, 2015, Analysis of high frequency geostationary ocean colour data using DINEOF, Estuar. Coast. Shelf Sci., 159, 28, 10.1016/j.ecss.2015.03.026
Dreano, 2015, Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter, Spat. Stat., 13, 1, 10.1016/j.spasta.2015.04.002
Hilborn, A., and Costa, M. (2018). Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region. Remote Sens., 10.
Jayaram, 2018, Analysis of gap-free chlorophyll-a data from MODIS in Arabian Sea, reconstructed using DINEOF, Int. J. Remote Sens., 39, 7506, 10.1080/01431161.2018.1471540
Liu, 2014, Spatio-temporal stability and abnormality of chlorophyll-a in the northern south china sea during 2002-2012 from MODIS images using wavelet analysis, Cont. Shelf Res., 75, 15, 10.1016/j.csr.2013.12.010
Liu, 2016, Analysis of ocean diurnal variations from the Korean Geostationary Ocean Color Imager measurements using the DINEOF method, Estuar. Coast. Shelf Sci., 180, 230, 10.1016/j.ecss.2016.07.006
Liu, 2018, Gap filling of missing data for VIIRS global ocean color products using the DINEOF Method, IEEE Trans. Geosci. Remote Sens., 56, 4464, 10.1109/TGRS.2018.2820423
Miles, 2010, Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS satellite imagery, Cont. Shelf Res., 30, 1951, 10.1016/j.csr.2010.08.016
Krasnopolsky, V., Nadiga, S., Mehra, A., Bayler, E., and Behringer, D. (2016). Neural networks technique for filling gaps in satellite measurements: Application to ocean color observations. Comput. Intell. Neurosci., 2016.
Guisan, 2000, Predictive habitat distribution models in ecology, Ecol. Modell., 135, 147, 10.1016/S0304-3800(00)00354-9
Jane, E., Catherine, H.G., Robert, P.A., Miroslav, D., Simon, F., Antoine, G., Robert, J.H., Falk, H., John, R.L., and Anthony, L. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.)., 29.
Radtke, 2017, Spatial prediction of demersal fish diversity in the Baltic Sea: Comparison of machine learning and regression-based techniques, ICES J. Mar. Sci., 74, 102, 10.1093/icesjms/fsw136
Beckers, 2003, EOF calculations and data filling from incomplete oceanographic datasets, J. Atmos. Ocean. Technol., 20, 1839, 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2
Smith, 2001, The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica, Deep. Res. Part I Oceanogr. Res. Pap., 48, 137, 10.1016/S0967-0637(00)00045-5
Boyd, 2002, Environmental factors controlling phytoplankton processes in the Southern Ocean, J. Phycol., 38, 844, 10.1046/j.1529-8817.2002.t01-1-01203.x
Jones, 2017, The influence of short-term events on the hydrographic and biological structure of the southwestern Ross Sea, J. Mar. Syst., 166, 184, 10.1016/j.jmarsys.2016.09.006
Peloquin, 2007, Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition, J. Geophys. Res. Ocean., 112, 1, 10.1029/2006JC003816
DeLizo, 2017, Temporal progression of photosynthetic-strategy in phytoplankton in the Ross Sea, Antarctica, J. Mar. Syst., 166, 87, 10.1016/j.jmarsys.2016.08.014
Sedwick, 2011, Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf, J. Geophys. Res. Ocean., 116, 1, 10.1029/2010JC006553
Lynch, 2014, First global census of the Adélie Penguin, Auk Ornithol. Adv., 131, 457
Emslie, S.D., McKenzie, A., and Patterson, W.P. (2018). The rise and fall of an ancient adélie penguin ‘supercolony’ at cape adare, antarctica. R. Soc. Open Sci., 5.
Weber, 1986, The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa, Deep Sea Res. Part A, Oceanogr. Res. Pap., 33, 1327, 10.1016/0198-0149(86)90039-7
Kaufman, 2014, Biogeochemical variability in the southern Ross Sea as observed by a glider deployment, Deep. Res. Part I Oceanogr. Res. Pap., 92, 93, 10.1016/j.dsr.2014.06.011
Lyver, 2011, Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica, Polar Biol., 34, 49, 10.1007/s00300-010-0858-0
Reynolds, 2007, Daily high-resolution-blended analyses for sea surface temperature, J. Clim., 20, 5473, 10.1175/2007JCLI1824.1
EUMETSAT Ocean and Sea Ice Satelitte Application Facility (2019, June 05). Available online: http://osisaf.met.no.
Comiso, 1997, Passive microwave algorithms for sea ice concentration: A comparison of two techniques, Remote Sens. Environ., 60, 357, 10.1016/S0034-4257(96)00220-9
Dee, 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553, 10.1002/qj.828
Fogt, 2012, The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low, J. Geophys. Res. Atmos., 117, 1, 10.1029/2011JD017337
Coggins, 2014, Synoptic climatology of the Ross Ice Shelf and Ross Sea region of Antarctica: K-means clustering and validation, Int. J. Climatol., 34, 2330, 10.1002/joc.3842
Dale, 2017, Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region, Cryosphere, 11, 267, 10.5194/tc-11-267-2017
Buchlin, 2013, Evaluation of the antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations, Clim. Dyn., 40, 353, 10.1007/s00382-012-1396-y
(2009). Gebco Gridded Global Bathymetry Data, British Oceanographic Data Centre.
Becker, 2009, Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355, 10.1080/01490410903297766
GlobColour data (http://globcolour.info) used in this study has been developed, validated, and distributed by ACRI-ST, France.
Saba, 2011, An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, 8, 489, 10.5194/bg-8-489-2011
Parson, T.R., Maita, Y., and Lalli, C.M. (2013). A Manual of Chemical & Biological Methods for Seawater Analysis, Pergamon Press.
Morales Maqueda, M.A., Willmott, A.J., and Biggs, N.R.T. (2004). Polynya dynamics: A review of observations and modeling. Rev. Geophys., 42.
Nihashi, 2001, Relationship between ice decay and solar heating through open water in the Antarctic sea ice zone, J. Geophys. Res. Ocean., 106, 16767, 10.1029/2000JC000399
Coale, 2003, Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W, Deep Sea Res. Part II Top. Stud. Oceanogr., 50, 635, 10.1016/S0967-0645(02)00588-X
Sedwick, P.N., Garcia, N.S., Riseman, S.F., Marsay, C.M., and DiTullio, G.R. (2007). Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance. Phaeocystis Major Link Biogeochem. Cycl. Clim. Elem., 83–97.
McGillicuddy, 2015, Iron supply and demand in an Antarctic shelf ecosystem, Geophys. Res. Lett., 42, 8088, 10.1002/2015GL065727
Reddy, T.E., and Arrigo, K.R. (2006). Constraints on the extent of the Ross Sea phytoplankton bloom. J. Geophys. Res. Ocean., 111.
Arrigo, 1994, Spring phytoplankton production in the western Ross Sea, Science, 266, 261, 10.1126/science.266.5183.261
Mangoni, 2017, Phytoplankton blooms during austral summer in the Ross Sea, Antarctica: Driving factors and trophic implications, PLoS One, 12, 1, 10.1371/journal.pone.0176033
Kaufman, 2017, Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export, J. Geophys. Res. Ocean., 122, 2339, 10.1002/2016JC012514
Smith, 2007, Trophic interactions within the Ross Sea continental shelf ecosystem, Philos. Trans. R. Soc. B Biol. Sci., 362, 95, 10.1098/rstb.2006.1956
Smith, 2015, Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea, ICES J. Mar. Sci., 72, 1952, 10.1093/icesjms/fsu234
2013, Bilinear interpolation theorems and applications, J. Funct. Anal., 265, 185, 10.1016/j.jfa.2013.05.001
Khoshgoftaar, 2011, Comparing boosting and bagging techniques with noisy and imbalanced data, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 41, 552, 10.1109/TSMCA.2010.2084081
Noi, P.T., and Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Switzerland), 18.
He, 2008, Learning from imbalanced data, Trans. Knowl. Data Eng., 21, 1263
Abraham, 2013, A Review of Class Imbalance Problem, J. Netw. Innov. Comput., 1, 332
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning, Springer.
Su, 2018, Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations, J. Geophys. Res. Ocean., 123, 399, 10.1002/2017JC013631
Pinto, 2018, Hierarchical brain tumour segmentation using extremely randomized trees, Pattern Recognit., 82, 105, 10.1016/j.patcog.2018.05.006
Liaw, 2002, Classification and regression by randomForest, R News, 2, 18
Du, 2015, Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features, ISPRS J. Photogramm. Remote Sens., 105, 38, 10.1016/j.isprsjprs.2015.03.002
Beckers, 2006, DINEOF reconstruction of clouded images including error maps application to the Sea-Surface Temperature around Corsican Island, Ocean Sci., 2, 183, 10.5194/os-2-183-2006
Ping, B., Su, F., and Meng, Y. (2016). An improved DINEOF algorithm for filling missing values in spatio-temporal sea surface temperature data. PLoS One, 11.
Mollineda, 2012, On the effectiveness of preprocessing methods when dealing with different levels of class imbalance, Knowledge-Based Syst., 25, 13, 10.1016/j.knosys.2011.06.013
Lu, 2011, Learning from imbalanced data sets with a Min-Max modular support vector machine, Front. Electr. Electron. Eng. China, 6, 56, 10.1007/s11460-011-0127-1
Smith, 2010, Phytoplankton photosynthetic pigments in the Ross Sea: Patterns and relationships among functional groups, J. Mar. Syst., 82, 177, 10.1016/j.jmarsys.2010.04.014
Arrigo, 2003, A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production, J. Geophys. Res., 108, 3231, 10.1029/2001JC000856
Garrison, 2003, Development of sea ice microbial communities during autumn ice formation in the Ross Sea, Mar. Ecol. Prog. Ser., 259, 1, 10.3354/meps259001
Ji, 2010, Marine plankton phenology and life history in a changing climate: Current research and future directions, J. Plankton Res., 32, 1355, 10.1093/plankt/fbq062
Marchese, C., Albouy, C., Tremblay, J.-É., Dumont, D., D’Ortenzio, F., Vissault, S., and Bélanger, S. (2017). Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol., 40.
Guinder, V., and Molinero, J. (2014). Climate Change Effects on Marine Phytoplankton. Mar. Ecol. a Chang. World, 68–90.
Hales, B., and Takahashi, T. (2004). High-resolution biogeochemical investigation of the Ross Sea, Antarctica, during the AESOPS (U. S. JGOFS) Program. Global Biogeochem. Cycles, 18.