Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability
Tóm tắt
Từ khóa
Tài liệu tham khảo
Csűrös M, Kao MY: Provably fast and accurate recovery of evolutionary trees through harmonic greedy triplets. SIAM Journal on Computing. 2001, 31: 306-322.
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987, 4: 406-425.
Moret BME, Wang LS, Warnow T: Toward new software for computational phylogenetics. IEEE Computer. 2002, 35 (7): 55-64.
Pelleg D: Algorithms for constructing phylogenies from quartets. Master's thesis. 1998, Israel Institute of Technology
Ben-Dor A, Chor B, Graur D, Ophir R, Pelleg D: From four-taxon trees to phylogenies (preliminary report): The Case of Mammalian Evolution. Proceedings of the 2nd Annual International Conference on Computational Molecular Biology. 1998, 9-19.
Kearney PE: The ordinal quartet method. Proceedings of the 2nd Annual International Conference on Computational Molecular Biology. 1998, 125-134.
Erdős PL, Steel M, Székély L, Warnow T: Constructing big trees from short sequences. Lecture Notes in Computer Science 1256: Proceedings of the 24th International Colloquium on Automata, Languages, and Programming. Edited by: Goos G, Hartmanis J, van Leeuwen J. 1997, 827-837. New York, NY: Springer-Verlag
Erdős PL, Steel MA, Székely LA, Warnow T: A few logs suffice to build (almost) all trees I. Random Structures and Algorithms. 1997, 14: 153-184.
Strimmer K, von Haeseler A: Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution. 1996, 13 (7): 964-969.
Davison AC, Hinkley DV:: Bootstrap Methods and Their Applications. 1997, Cambridge, U.K.: Cambridge University Press
Swofford DL, Olsen GJ, Waddell PJ, Hillis DM: Phylogenetic Inference. Molecular Systematics. Edited by: Hillis DM, Moritz C, Mable BK. 1996, 407-514. Sunderland, MA: Sinauer Associates, 2
Jiang T, Kearney P, Li M: Some open problems in computational molecular biology. Journal of Algorithms. 2000, 34: 194-201.
Gramm J, Niedermeier R: A fixed-parameter algorithm for minimum quartet inconsistency. Journal of Computer and System Sciences. 2003, 67: 723-741.
Wu G, Lin G, You J: Quartet based phylogeny reconstruction with answer set programming. Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence. 2004, 612-619.
Jiang T, Kearney P, Li M: A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM Journal on Computing. 2000, 30: 1942-1961.
Vedova GD, Jiang T, Li J, Wen J: Approximating minimum quartet inconsistency (abstract). Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. 2002, 894-895.
Berry V, Bryant D, Jiang T, Kearney P, Li M, Wareham T, Zhang H: A practical algorithm for recovering the best supported edges of an evolutionary tree (extended abstract). Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms. 2000, 287-296.
Jordan C: Sur les assemblages de lignes. Journal für die Reine und Angewandte Mathematik. 1869, 70: 185-190.
Kannan SK, Lawler EL, Warnow T: Determining the evolutionary tree using experiments. Journal of Algorithms. 1996, 21: 26-50.
Kao MY, Lingas A, Östlin A: Balanced randomized tree splitting with applications to evolutionary tree constructions. Lecture Notes in Computer Science 1563: Proceedings of the 16th International Symposium on Theoretical Aspects of Computer Science. Edited by: Meinel C, Tison S. 1999, 184-196. New York, NY: Springer-Verlag
Brodal GS, Fagerberg R, Pedersen CNS, Östlin A: The complexity of constructing evolutionary trees using experiments. Lecture Notes in Computer Science 2076: Proceedings of the 28th International Colloquium on Automata, Languages, and Programming. Edited by: Orejas F, Spirakis PG, van Leeuwen J. 2001, 140-151. New York, NY: Springer-Verlag