Recombinant Avian β-Defensin Produced by Food-Grade Lactococcus as a Novel and Potent Immunological Enhancer Adjuvant for Avian Vaccine

Probiotics and Antimicrobial Proteins - Tập 13 - Trang 1833-1846 - 2021
Xiaomei Wang1, Wenqian Wang1, Qing Pan1, Tingting Wang1, Li Gao1, Zhihao Wang1, Yulong Gao1, Kai Li1, Changjun Liu1, Jielan Mi1, Yanping Zhang1, Hongyu Cui1, Xiaole Qi1
1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China

Tóm tắt

In this study, we expressed rAvBD1-2–6-13 protein through Lactococcus lactis NZ3900, and the effects of the recombinant L. lactis NZ3900 as an immune enhancer and immune adjuvant were verified using in vivo and in vitro tests. In vitro tests revealed that recombinant L. lactis NZ3900 significantly activated the NF-κB signaling pathway and IRF signaling pathway in J774-Dual™ report cells and significantly increased the transcript levels of IL-10, IL-12p70, CD80, and CD86 in chicken PBMCs and chicken HD11 cells. In vivo experiments revealed that the immunized group supplemented with recombinant L. lactis NZ3900 as an adjuvant had significantly higher serum antibody titers and higher proliferative activity of PBMCs in the blood of the chickens immunized with NDV live and inactivated vaccines. Our study shows that the recombinant L. lactis NZ3900 has strong immunomodulatory activity both in vivo and in vitro and is a potential immune enhancer. Our work lays the foundation for the research and development of new animal immune enhancers for application in the poultry industry.

Tài liệu tham khảo

Banday AH, Jeelani S, Hruby VJ (2015) Cancer vaccine adjuvants–recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol 37(1):1–11. https://doi.org/10.3109/08923973.2014.971963 Lazzaro BP, Clark AG (2003) Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol Biol Evol 20(6):914–923. https://doi.org/10.1093/molbev/msg109 Sugiarto H, Yu PL (2004) Avian antimicrobial peptides: the defense role of beta-defensins. Biochem Biophys Res Commun 323(3):721–727. https://doi.org/10.1016/j.bbrc.2004.08.162 Wong JH, Xia L, Ng TB (2007) A review of defensins of diverse origins. Curr Protein Pept Sci 8(5):446–459. https://doi.org/10.2174/138920307782411446 Rehaume LM, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28(3):185–200. https://doi.org/10.1615/critrevimmunol.v28.i3.10 Kohlgraf KG, Pingel LC, Dietrich DE, Brogden KA (2010) Defensins as anti-inflammatory compounds and mucosal adjuvants. Future Microbiol 5(1):99–113. https://doi.org/10.2217/fmb.09.104 Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215. https://doi.org/10.1146/annurev.immunol.22.012703.104603 Kim J, Yang YL, Jang SH, Jang YS (2018) Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol J 15(1):124. https://doi.org/10.1186/s12985-018-1035-2 Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW (2015) Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 15:188. https://doi.org/10.1186/s12862-015-0465-3 Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14(1–3):48–58. https://doi.org/10.1159/000106082 Seegers JF (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20(12):508–515. https://doi.org/10.1016/s0167-7799(02)02075-9 Ishii M, Nishida S, Kataoka K, Nishiyama Y, Abe S, Sekimizu K (2017) Lactic acid bacteria of the Leuconostoc genus with high innate immunity-stimulating activity. Drug Discov Ther 11(1):25–29. https://doi.org/10.5582/ddt.2016.01078 Lee Y, Lee TS (2005) Enhancement in ex vivo phagocytic capacity of peritoneal leukocytes in mice by oral delivery of various lactic-acid-producing bacteria. Curr Microbiol 50(1):24–27. https://doi.org/10.1007/s00284-004-4377-5 Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK (2015) Lactic acid bacteria–20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99(7):2967–2977. https://doi.org/10.1007/s00253-015-6498-0 Troy EB, Kasper DL (2010) Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed) 15:25–34. https://doi.org/10.2741/3603 Greer A, Zenobia C (2000) Darveau RP (2013) Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 63(1):67–79. https://doi.org/10.1111/prd.12028 Diamond G, Beckloff N, Ryan LK (2008) Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res 87(10):915–927. https://doi.org/10.1177/154405910808701011 Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitós E (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact 14:137. https://doi.org/10.1186/s12934-015-0313-6 Maassen CB, Laman JD, den Bak-Glashouwer MJ, Tielen FJ, van Holten-Neelen JC, Hoogteijling L, Antonissen C, Leer RJ, Pouwels PH, Boersma WJ, Shaw DM (1999) Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17(17):2117–2128. https://doi.org/10.1016/s0264-410x(99)00010-9 Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62(3):1008–1013 Li J, Lin W, Chen H, Xu Z, Ye Y, Chen M (2020) Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell Immunol 349:104042. https://doi.org/10.1016/j.cellimm.2020.104042 Rožman P, Švajger U (2018) The tolerogenic role of IFN-γ. Cytokine Growth Factor Rev 41:40–53. https://doi.org/10.1016/j.cytogfr.2018.04.001 Ding SL, Pang ZY, Chen XM, Li Z, Liu XX, Zhai QL, Huang JM, Ruan ZY (2020) Urolithin a attenuates IL-1β-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-κB signaling pathways in rat articular chondrocytes. J Inflamm (Lond) 17:13. https://doi.org/10.1186/s12950-020-00242-8 Yao Y, Xu X, Li Y, Wang X, Yang H, Chen J, Liu S, Deng Y, Zhao Z, Yin Q, Sun M, Shi L (2020) Study of the association of seventeen single nucleotide polymorphisms and their haplotypes in the TNF-α, IL-2, IL-4 and IL-10 genes with the antibody response to inactivated Japanese encephalitis vaccine. Hum Vaccin Immunother 16(10):2449–2455. https://doi.org/10.1080/21645515.2020.1724743 Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH (1995) IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol 154(2):483–490 Becknell B, Caligiuri MA (2005) Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 86:209–239. https://doi.org/10.1016/S0065-2776(04)86006-1 Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29–53. https://doi.org/10.1146/annurev.immunol.20.091101.091806 Civallero M, Barni S, Nano R, Capelli E (2000) Dendritic cells and interleukin-2: cytochemical and ultrastructural study. Histol Histopathol 15(4):1077–1085. https://doi.org/10.14670/HH-15.1077 Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548. https://doi.org/10.1146/annurev.immunol.23.021704.115611 Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126. https://doi.org/10.1038/nri727 Wang S, Chen L (2004) T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol 1(1):37–42