Nhận diện các mẫu hành vi mô hình của sinh viên thông qua khai thác quy trình
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agichtein, E., Brill, E., Dumais, S. (2006). Improving web search ranking by incorporating user behavior information. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, (pp. 19–26).
Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In International Conference on Data Engineering. IEEE, New York, (pp. 3–14).
Berend, G., & Farkas, R. (2010). Sztergak: Feature engineering for keyphrase extraction. In Proceedings of the 5th International Workshop on Semantic Evaluation. Association for Computational Linguistics, Stroudsburg, (pp. 186–189).
Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.
Bogarín, A., Cerezo, R., Romero, C. (2018). A survey on educational process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1), 1230.
Cairns, A.H., Gueni, B., Fhima, M., Cairns, A., David, S., Khelifa, N. (2015). Process mining in the education domain. In International Journal on Advances in Intelligent Systems, Vol. 8. IARIA, USA.
Cao, H., Mamoulis, N., Cheung, D.W. (2005). Mining frequent spatio-temporal sequential patterns. In Fifth IEEE International Conference on Data Mining (ICDM’05). IEEE, New York, (pp. 8–11).
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. (2000). Freespan: frequent pattern-projected sequential pattern mining. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, (pp. 355–359).
Jansen, B.J., Spink, A., Saracevic, T. (2000). Real life, real users, and real needs: a study and analysis of user queries on the web. Information processing & management, 36(2), 207–227.
Jimaa, S. (2011). The impact of assessment on students learning. Procedia-Social and Behavioral Sciences, 28, 718–721.
Li, Z., Ma, X., Xin, H. (2017). Feature engineering of machine-learning chemisorption models for catalyst design. Catalysis Today, 280, 232–238.
Mabroukeh, N.R., & Ezeife, C.I. (2010). A taxonomy of sequential pattern mining algorithms. ACM Computing Surveys (CSUR), 43(1), 3.
Morita, M., & Shinoda, Y. (1994). Information filtering based on user behavior analysis and best match text retrieval. In SIGIR’94. Springer, Heidelberg, (pp. 272–281).
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H. (2001). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings 17th International Conference on Data Engineering. IEEE, New Yrok, (pp. 215–224).
Ré, C., Sadeghian, A.A., Shan, Z., Shin, J., Wang, F., Wu, S., Zhang, C. (2014). Feature engineering for knowledge base construction. CoRR abs/1407.6439. arXiv preprint arXiv:1407.6439.
Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27.
Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In International Conference on Extending Database Technology. Springer, Heidelberg, (pp. 1–17).
Struyven, K., Dochy, F., Janssens, S. (2005). Students’ perceptions about evaluation and assessment in higher education: a review. Assessment & Evaluation in Higher Education, 30(4), 325–341.
Turner, C.R., Fuggetta, A., Lavazza, L., Wolf, A.L. (1999). A conceptual basis for feature engineering. Journal of Systems and Software, 49(1), 3–15.
Yu, W., Tong, L., Congkai, G., Yihan, W. (2019). Evaluating student learning effect based on process mining. In ICAI2019. Springer, Heidelberg.