Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases

Future Journal of Pharmaceutical Sciences - Tập 8 - Trang 1-20 - 2022
Atiyabanu N. Saiyed1,2, Abhay R. Vasavada1, S. R. Kaid Johar3
1Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, India
2Ph.D. Scholar of Manipal Academy of Higher Education, Manipal, India
3Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, India

Tóm tắt

Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.

Tài liệu tham khảo

Garofalo M, Condorelli G, Croce CM (2008) MicroRNAs in diseases and drug response. Curr Opin Pharmacol 8:661–667. https://doi.org/10.1016/J.COPH.2008.06.005 Lu M, Zhang Q, Deng M et al (2008) An analysis of human microRNA and disease associations. PLoS ONE 3:3420. https://doi.org/10.1371/journal.pone.0003420 Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282 Hayder H, O’brien J, Nadeem U, Peng C (2018) MicroRNAs: crucial regulators of placental development. Reprod Rev. https://doi.org/10.1530/REP Gu S, Kay MA (2010) How do miRNAs mediate translational repression? Silence 1:1–11 Breving K, Esquela-Kerscher A (2010) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 42:1316–1329. https://doi.org/10.1016/J.BIOCEL.2009.09.016 Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97:1–6 Biggar KK, Storey KB (2015) Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. J Exp Biol. https://doi.org/10.1242/jeb.104828 Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2015.05.001 Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524 Behm-Ansmant I, Rehwinkel J, Doerks T et al (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898. https://doi.org/10.1101/gad.1424106 Oliveira C, Faoro H, Alves LR, Goldenberg S (2017) RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Genet Mol Biol. https://doi.org/10.1590/1678-4685-GMB-2016-0258 Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110 Okamura K (2012) Diversity of animal small RNA pathways and their biological utility. Wiley Interdiscip Rev RNA 3:351–368 Jiang S, Yan W (2016) Current view of microRNA processing. Sign Transduct Insights 2016:5–9. https://doi.org/10.4137/STi.S12317 Drewry M, Helwa I, Rand Allingham R et al (2016) miRNA profile in three different normal human ocular tissues by miRNA-Seq. Investig Ophthalmol Vis Sci 57:3731–3739. https://doi.org/10.1167/iovs.16-19155 Xie M, Steitz JA (2014) Versatile microRNA biogenesis in animals and their viruses. RNA Biol 11:673–681 Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 107:605–610 Davis-Dusenbery BN, Hata A (2010) Mechanisms of control of microRNA biogenesis. J Biochem. https://doi.org/10.1093/jb/mvq096 Beezhold KJ, Castranova V, Chen F (2010) Microprocessor of microRNAs: regulation and potential for therapeutic intervention. Mol Cancer 9:134. https://doi.org/10.1186/1476-4598-9-134 Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903 Herrera-Carrillo E, Berkhout B (2017) SURVEY AND SUMMARY Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 45:10369–10379. https://doi.org/10.1093/nar/gkx779 Abdelfattah AM, Park C, Choi MY (2014) Update on non-canonical microRNAs. BioMol Concepts 5:275–287. https://doi.org/10.1515/bmc-2014-0012 Havens MA, Reich AA, Duelli DM, Hastings ML (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640. https://doi.org/10.1093/nar/gks026 Srivastava SK, Arora S, Averett C et al (2015) Modulation ofmMicroRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. Biomed Res Int. https://doi.org/10.1155/2015/848710 Mirza S, Shah K, Patel S et al (2017) Natural compounds as epigenetic regulators of human dendritic cell-mediated immune function. J Immunother 41:169–180 Piletič K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90:2405–2419 Bartel DP (2004) Review MicroRNAs: genomics, biogenesis, mechanism, and function ulation of hematopoietic lineage differentiation in mam-mals (Chen et al., 2004), and control of leaf and flower development in plants (Aukerman and Sakai, 2003) Ramamoorthy A, Skaar TC (2011) In silico identification of microRNAs predicted to regulate the drug metabolizing cytochrome P450 genes. Drug Metab Lett. 5(2):126–31. https://doi.org/10.2174/187231211795305258 Yokoi T, Nakajima M (2013) MicroRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol 53:377–400 Peng L, Zhong X (2015) Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B 5:106–112 Johansson I, Ingelman-Sundberg M (2011) Genetic polymorphism and toxicology-with emphasis on cytochrome P450. Toxicol Sci 120:1–13. https://doi.org/10.1093/toxsci/kfq374 Yu AM, Tian Y, Tu MJ et al (2016) MicroRNA pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos 44:308–319 Gomez A, Ingelman-Sundberg M (2009) Epigenetic and microRNA-dependent control of cytochrome P450 expression: a gap between DNA and protein. Pharmacogenomics 10:1067–1076 Li D, Tolleson WH, Yu D et al (2019) Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health Part C. https://doi.org/10.1080/10590501.2019.1639481 Yu A-M, Pan Y-Z (2012) Noncoding microRNAs: small RNAs play a big role in regulation of ADME? Acta Pharm Sin B 2:93–101. https://doi.org/10.1016/j.apsb.2012.02.011 Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236 Hirota T, Tanaka T, Takesue H, Ieiri I (2017) Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 13:19–30 Toscano-Garibay JD, Aquino-Jarquin G (2012) Regulation exerted by miRNAs in the promoter and UTR sequences: MDR1/P-gp expression as a particular case. DNA Cell Biol 31:1358–1364. https://doi.org/10.1089/dna.2012.1703 Ikemura K, Iwamoto T, Okuda M (2014) MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function. Pharmacol Ther 143:217–224 Aqeilan RI, Calin G, Kocerha J et al (2019) The potential for microRNA therapeutics and clinical research. Front Genet. https://doi.org/10.3389/fgene.2019.00478 Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science (80-) 308:557–560. https://doi.org/10.1126/science.1108784 Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev. https://doi.org/10.1152/physrev.00036.2006.-The Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206 Van Rooij E, Kauppinen S (2014) Review review series: small RNA development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864. https://doi.org/10.15252/emmm.201100899 Wang DZ (2010) MicroRNAs in cardiac development and remodeling. Pediatr Cardiol 31:357–362 Vasu S, Kumano K, Darden CM et al (2019) MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells. https://doi.org/10.3390/cells8121533 Chen JF, Callis TE, Wang DZ (2009) microRNAs and muscle disorders. J Cell Sci 122:13–20. https://doi.org/10.1242/jcs.041723 Tagliaferri P, Rossi M, Di Martino MT et al (2012) Promises and challenges of microRNA-based treatment of multiple myeloma. Curr Cancer Drug Targets 12:838–846 Stenvang J, Petri A, Lindow M et al (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1–7 Singh SK, Nielsen P, Koshkin AA, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun. https://doi.org/10.1039/a708608c Fabani MM, Gait MJ (2008) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14:336–346. https://doi.org/10.1261/rna.844108 Braasch DA, Corey DR (2002) Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 41:4503–4510. https://doi.org/10.1021/bi0122112 Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): ¢ne-tuning the recognition of DNA and RNA. Chem Biol 8:1–7 Ishige T, Itoga S, Matsushita K (2018) Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer. Adv Clin Chem 83:53–72. https://doi.org/10.1016/BS.ACC.2017.10.002 Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–1120. https://doi.org/10.1038/gt.2011.100 Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol. https://doi.org/10.1371/journal.pbio.0020098 Baumann V, Winkler J (2014) Medicinal Chemistry miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 6:1967–1984. https://doi.org/10.4155/FMC.14.116 Kasinski AL, Slack FJ (2012) Arresting the culprit: targeted antagomir delivery to sequester oncogenic miR-221 in HCC. Mol Ther Nucleic Acids 1:e12 Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs.” Nature 438:685–689. https://doi.org/10.1038/nature04303 Jopling CL, Schütz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77–85. https://doi.org/10.1016/j.chom.2008.05.013 Lindow M, Kauppinen S (2012) Discovering the first microrna-targeted drug. J Cell Biol 199:407–412. https://doi.org/10.1083/jcb.201208082 Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science (80-) 327:198–201. https://doi.org/10.1126/science.1178178 Takahashi R, Prieto-Vila M, Kohama I, Ochiya T (2019) Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 110:1140–1147 Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865 Zhang NY (2018) Antisense phosphorodiamidate morpholino oligomers as novel antiviral compounds. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00750 Sharma C, Awasthi SK (2017) Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 89(1):16-37. https://doi.org/10.1111/cbdd.12833 Montazersaheb S, Saeid Hejazi M, Charoudeh HN (2018) Potential of peptide nucleic acids in future therapeutic applications. Adv Pharm Bull 8:551–563. https://doi.org/10.15171/apb.2018.064 Singh Jasbir 294–315 (1) Järver P, Coursindel T, El Andaloussi S et al (2012) Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA. Mol Ther Nucleic Acids 1:e27 Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043–2050 Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K et al (2012) Generation of miRNA sponge constructs. Methods 58:113–117. https://doi.org/10.1016/J.YMETH.2012.07.019 Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146:353–358 Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. https://doi.org/10.1038/nature09144 Gandellini P, Profumo V, Folini M, Zaffaroni N (2011) MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets 15:265–279 Barta T, Peskova L, Hampl A (2016) miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep. https://doi.org/10.1038/srep36625 Clauss S, Sinner MF, Kääb S, Wakili R (2015) The role of microRNAs in antiarrhythmic therapy for atrial fibrillation. Arrhythm Electrophysiol Rev 4(3):146–155. https://doi.org/10.15420/aer.2015.4.3.146 Wang Z (2009) MicroRNA interference technologies. Springer, Berlin Wang Z (2011) The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol 676:43–49. https://doi.org/10.1007/978-1-60761-863-8_3 Lima JF, Cerqueira L, Figueiredo C et al (2018) Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol 15:338–352. https://doi.org/10.1080/15476286.2018.1445959 Krol J, Busskamp V, Markiewicz I et al (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141:618–631. https://doi.org/10.1016/j.cell.2010.03.039 Winbanks CE, Beyer C, Hagg A et al (2013) miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4. PLoS ONE. https://doi.org/10.1371/journal.pone.0073589 Meloni M, Marchetti M, Garner K et al (2013) Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther 21:1390–1402. https://doi.org/10.1038/MT.2013.89 Trang P, Medina PP, Wiggins JF et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29:1580–1587. https://doi.org/10.1038/onc.2009.445 Meng J, Chen S, Han J-X et al (2018) Derepression of co-silenced tumor suppressor genes by nanoparticle-loaded circular ssDNA reduces tumor malignancy. Sci Transl Med 10:eaao6321 Wen D, Danquah M, Chaudhary AK, Mahato RI (2015) Small molecules targeting microRNA for cancer therapy: promises and obstacles. J Control Release 219:237–247. https://doi.org/10.1016/J.JCONREL.2015.08.011 Papapetrou EP, Korkola JE, Sadelain M (2010) Tissue/specific stem cells a genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells 28:287–296. https://doi.org/10.1002/stem.257 Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259. https://doi.org/10.1038/ni.1798 Rhim C, Cheng CS, Kraus WE, Truskey GA (2010) Effect of microRNA modulation on bioartificial muscle function. Tissue Eng Part A. https://doi.org/10.1089/ten.tea.2009.0601 Sayed D, Rane S, Abdellatif M (2008) MicroRNAs challenge the status quo of therapeutic targeting. J Cardiiovasc Transl Res. https://doi.org/10.1007/s12265-008-9052-y Athyros VG, Katsiki N, Karagiannis A (2016) Send orders for reprints to [email protected] Is targeting microRNAs the philosopher’s stone for vascular disease? Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278 Makarova KS, Koonin EV. Annotation and classification of CRISPR-cas systems. https://doi.org/10.1007/978-1-4939-2687-9_4 Hille F, Charpentier E (No Title). https://doi.org/10.1098/rstb.2015.0496 Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-cas systems. Nat Rev Microbiol 9:467–477. https://doi.org/10.1038/nrmicro2577 Aquino-Jarquin G (2017) Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-2142 Ginn SL, Amaya AK, Alexander IE et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20:e3015 You L, Tong R, Li M et al (2019) Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol Ther Methods Clin Dev 13:359–370 Xiao Q, Guo D, Chen S (2019) Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2019.00069/FULL Nguyen D-D, Chang S (2017) Molecular sciences development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci. https://doi.org/10.3390/ijms19010065 Biagioni A, Laurenzana A, Margheri F et al (2018) Delivery systems of CRISPR/Cas9-based cancer gene therapy. J Biol Eng. https://doi.org/10.1186/s13036-018-0127-2 Luo J (2016) CRISPR/Cas9: from genome engineering to cancer drug discovery. Trends in Cancer 2:313–324 Herrera-Carrillo E, Liu YP, Berkhout B (2017) Improving miRNA delivery by optimizing mirna expression cassettes in diverse virus vectors. Hum Gene Ther Methods. https://doi.org/10.1089/hgtb.2017.036 Melo SA, Sugimoto H, O’Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721. https://doi.org/10.1016/j.ccell.2014.09.005 del C. Monroig P, Chen L, Zhang S, Calin GA (2015) Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev 81:104–116. https://doi.org/10.1016/J.ADDR.2014.09.002 Petrescu GED, Sabo AA, Torsin LI et al (2019) MicroRNA based theranostics for brain cancer: basic principles. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-019-1180-5 Gumireddy K, Young DD, Xiong X et al (2008) Supporting information small molecule inhibitors of microRNA miR-21 function. Angew Chem 120:7592–7594 Raver-Shapira N, Marciano E, Meiri E et al (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743. https://doi.org/10.1016/j.molcel.2007.05.017 Bakhshandeh B, Soleimani M, Hafizi M et al (2012) A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64:523–540. https://doi.org/10.1007/s10616-012-9430-9 Zhang X, Godbey WT (2006) Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 58:515–534. https://doi.org/10.1016/J.ADDR.2006.03.006 Liu YP, Berkhout B (2011) miRNA cassettes in viral vectors: problems and solutions. Biochim Biophys Acta Gene Regul Mech 1809:732–745. https://doi.org/10.1016/J.BBAGRM.2011.05.014 Xie J, Burt DR, Gao G (2015) Adeno-associated virus-mediated microRNA delivery and therapeutics. Semin Liver Dis 35:81–88. https://doi.org/10.1055/s-0034-1397352 Naso MF, Tomkowicz B, Iii WLP, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. https://doi.org/10.1007/s40259-017-0234-5 Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017. https://doi.org/10.1016/j.cell.2009.04.021 Buchschacher GL, Wong-Staal F (2000) Development of lentiviral vectors for gene therapy for human diseases. Blood J Am Soc Hematol 95:2499–2504 Liechtenstein T, Perez-Janices N, Escors D (2013) Lentiviral vectors for cancer immunotherapy and clinical applications. Cancers (Basel) 5:815–837. https://doi.org/10.3390/cancers5030815 Barquinero J, Eixarch H, Pérez-Melgosa M (2004) Retroviral vectors: new applications for an old tool. Gene Ther. https://doi.org/10.1038/sj.gt.3302363 al Yacoub N, Romanowska M, Haritonova N, Foerster J (2007) Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med 9:579–584. https://doi.org/10.1002/jgm.1052 Sliva K, Schnierle BS (2010) Selective gene silencing by viral delivery of short hairpin RNA. Virol J 7:1 Fu Y, Chen J, Huang Z (2019) Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA. https://doi.org/10.1186/s41544-019-0024-y Yang Z, Cappello T, Wang L (2015) Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin B 5:145–150 Wu Y, Crawford M, Mao Y et al (2013) Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2:e84. https://doi.org/10.1038/mtna.2013.14 Tros de Ilarduya C, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170. https://doi.org/10.1016/J.EJPS.2010.03.019 Kobayashi M, Sawada K, Kimura T (2018) Is microRNA replacement therapy promising treatment for cancer? Non-coding RNA Investig 2:56–56. https://doi.org/10.21037/ncri.2018.09.04 Bai Z, Wei J, Yu C et al (2019) Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 7:1209–1225 Kubo T, Yanagihara K, Takei Y et al (2012) Lipid-conjugated 27-nucleotide double-stranded RNAs with dicer-substrate potency enhance RNAi-mediated gene silencing. Mol Pharm 9:1374–1383. https://doi.org/10.1021/mp2006278 McClorey G, Banerjee S (2018) Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 6(2):51. https://doi.org/10.3390/biomedicines6020051 Nayerossadat N, Ali P, Maedeh T (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27. https://doi.org/10.4103/2277-9175.98152 Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369. https://doi.org/10.1038/sj.gt.3302337 Ramanathan S, Shenoda BB, Lin Z et al (2019) Inflammation potentiates miR-939 expression and packaging into small extracellular vesicles. J Extracell Vesicles. https://doi.org/10.1080/20013078.2019.1650595 Ji Y, Han Z, Shao L, Zhao Y (2016) Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer Med 5:2534–2543. https://doi.org/10.1002/cam4.840 Wischhusen JC, Chowdhury SM, Lee T et al (2020) Ultrasound-mediated delivery of miRNA-122 and anti-miRNA-21 therapeutically immunomodulates murine hepatocellular carcinoma in vivo. J Control Release 321:272–284. https://doi.org/10.1016/J.JCONREL.2020.01.051 Yang C, Li B, Yu J et al (2018) Ultrasound microbubbles mediated miR-let-7b delivery into CD133 + ovarian cancer stem cells. Biosci Rep. https://doi.org/10.1042/BSR20180922 Wan C, Li F, Li H (2015) Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 12:4803–4814 Kopechek JA, McTiernan CF, Chen X et al (2019) Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function. Theranostics 9:7088–7098. https://doi.org/10.7150/thno.34895 Wen MM, Soreq H, Lahiri DK, Hornstein E (2016) Getting miRNA therapeutics into the target cells for neurodegenerative diseases: a mini-review. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2016.00129 Liu Y, Chen Y, Wang Y et al (2018) MicroRNA profiling in glaucoma eyes with varying degrees of optic neuropathy by using next-generation sequencing. Investig Ophthalmol Vis Sci 59:2955–2966. https://doi.org/10.1167/iovs.17-23599 Souza S, De Almeida T, Horst CH et al (2018) Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules. https://doi.org/10.3390/molecules23071825 Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy—an overview. J Clin Diagn Res 9:GE01–GE06 Chakraborty C, Sharma AR, Sharma G, Lee SS (2021) Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res 28:127–138 World Health Organization. WHO traditional medicine strategy. 2014–2023 Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the Era of big data. Plant Cell 30:272–284 Avni A, Valli AA, Taliansky M et al (2018) Plant small non-coding RNAs and their roles in biotic stresses. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01038 Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol. https://doi.org/10.1093/gbe/evs002 Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science (80-) 307:932–935. https://doi.org/10.1126/science.1107130 Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–1044 Yu Y, Jia T, Chen X (2017) The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–1017 Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-050718 Yu D, Lu J, Shao W et al (2019) MepmiRDB: a medicinal plant microRNA database. Database. https://doi.org/10.1093/database/baz070 Hussein RA, El-Anssary A (2019) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Herbal medicine. IntechOpen Alshehri B (2021) Plant-derived xenomiRs and cancer: cross-kingdom gene regulation. Saudi J Biol Sci 28:2408–2422. https://doi.org/10.1016/J.SJBS.2021.01.039 Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D et al (2020) Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. https://doi.org/10.7717/peerj.9567 Cavalieri D, Rizzetto L, Tocci N et al (2016) Plant microRNAs as novel immunomodulatory agents OPEN. Nat Publ Gr. https://doi.org/10.1038/srep25761 Micó V, Martín R, Lasunción MA et al (2016) Unsuccessful detection of plant microRNAs in beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil. Plant Foods Hum Nutr 71:102–108. https://doi.org/10.1007/s11130-016-0534-9 Sabzehzari M, Naghavi MR (2019) Phyto-miRNA: a molecule with beneficial abilities for plant biotechnology. Gene 683:28–34. https://doi.org/10.1016/J.GENE.2018.09.054 Fukushima A, Riken J, Pacak AM et al (2019) A bioinformatics approach to explore microRNAs as tools to bridge pathways between plants and animals. Is DNA damage response (DDR) a potential target process? Front Plant Sci. https://doi.org/10.3389/fpls.2019.01535 Baier SR, Nguyen C, Xie F et al (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers 1–3. J Nutr Biochem Mol Genet Mech. https://doi.org/10.3945/jn.114.196436 Szcześniak MW, Makabowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1156 Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:155–162. https://doi.org/10.1093/nar/gky1141 Hou YH, Jeyaraj A, Zhang X, Wei CL (2017) Absolute quantification of microRNAs in green tea (Camellia sinensis) by stem-loop quantitative real-time PCR. J Sci Food Agric 97:2975–2981. https://doi.org/10.1002/jsfa.8137 Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005.001 Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. https://doi.org/10.1038/ng2135 Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. https://doi.org/10.1038/ng1536 Pirrò S, Minutolo A, Galgani A et al (2016) Bioinformatics prediction and experimental validation of MicroRNAs involved in cross-kingdom interaction. J Comput Biol 23:976–989. https://doi.org/10.1089/cmb.2016.0059 Fu H, Tie Y, Xu C et al (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579:3849–3854. https://doi.org/10.1016/j.febslet.2005.05.064 Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. https://doi.org/10.1093/nar/gkr319 Patel M, Patel S, Mangukia N et al (2019) Ocimum basilicum miRNOME revisited: a cross kingdom approach. Genomics 111:772–785. https://doi.org/10.1016/j.ygeno.2018.04.016 Gadhavi H, Patel M, Mangukia N et al (2019) Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach. Plant Signal Behav. https://doi.org/10.1080/15592324.2019.1699265 Dubey A (2013) Computational prediction of miRNA in Gmelina arborea and their role in human metabolomics. Am J Biosci Bioeng 1:62. https://doi.org/10.11648/j.bio.20130105.12 Sinha S, Dixit P, Bhargava S et al (2006) Bark and fruit extracts of Gmelina arborea protect liver cells from oxidative stress. Pharm Biol 44:237–243. https://doi.org/10.1080/13880200600713667 Abd Karim NA, Ibrahim MD, Kntayya SB et al (2016) Moringa oleifera Lam: targeting chemoprevention. Asian Pac J Cancer Prev 17:3675–3686 Razis AFA, Ibrahim MD, Kntayya SB (2014) Health benefits of Moringa oleifera. Asian Pac J Cancer Prev 15:8571–8576 Gonfloni S, Iannizzotto V, Maiani E et al (2014) P53 and Sirt1: routes of metabolism and genome stability. Biochem Pharmacol 92:149–156 Pirrò S, Zanella L, Kenzo M et al (2016) MicroRNA from Moringa oleifera: identification by high throughput sequencing and their potential contribution to plant medicinal value. PLoS ONE. https://doi.org/10.1371/journal.pone.0149495 Eddouks M, Maghrani M, Lemhadri A et al (2002) Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J Ethnopharmacol 82:97–103. https://doi.org/10.1016/S0378-8741(02)00164-2 Tenorio FA, Del Valle L, González A, Pastelín G (2005) Vasodilator activity of the aqueous extract of Viscum album. Fitoterapia 76:204–209. https://doi.org/10.1016/J.FITOTE.2004.12.013 Xie W, Adolf J, Melzig MF (2017) Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE. https://doi.org/10.1371/journal.pone.0187776 Singh N, Srivastava S, Sharma A (2016) Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 575:570–576. https://doi.org/10.1016/J.GENE.2015.09.036 Rameshwari R (2013) In silico prediction of mirna in Curcuma longa and their role in human metabolomics. Int J Adv Biotechnol Res 4(2):253–259. http://www.bipublication.com Kumar D, Kumar S, Ayachit G et al (2017) Cross-kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: a systems biology approach. Int J Mol Sci. https://doi.org/10.3390/ijms18061191 Jha N, Bhatt D, Patel MK et al (2020) In silico EST data analysis of Curcuma longa: a cross kingdom approach. Int Assoc Biol Comput Digest 5:132–141 Bhatt DH, Jha N, Johar KS et al (2017) The pharma innovation. Journal 6:543–548 Oyewole SO, Akinyemi O, Jimoh KA (2018) Medicinal plants and sustainable human health: a review. Hortic Int J. https://doi.org/10.15406/hij.2018.02.00051 Esatbeyoglu T, Huebbe P, Ernst IMA et al (2012) Curcumin-from molecule to biological function. Angew Chem Int Ed 51:5308–5332 Dahmke IN, Backes C, Rudzitis-Auth J et al (2013) Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PLoS ONE. https://doi.org/10.1371/journal.pone.0081122 Al Perge P, An Nagy Z, Decmann A et al (2017) Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol. https://doi.org/10.1080/15476286.2016.1251001 Ivashuta SI, Petrick JS, Heisel SE et al (2009) Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes. Food Chem Toxicol 47:353–360. https://doi.org/10.1016/J.FCT.2008.11.025 Zhang Y-J, Gan R-Y, Li S et al (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. MDPI. https://doi.org/10.3390/molecules201219753 Lukasik A, Zielenkiewicz P (2014) Silico identification of plant miRNAs in mammalian breast milk exosomes-a small step forward? PLoS ONE 9:99963. https://doi.org/10.1371/journal.pone.0099963 Zhang L, Hou D, Chen X et al (2011) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126. https://doi.org/10.1038/cr.2011.158 Li Z, Xu R, Li N (2016) MicroRNAs from plants to animals, do they define a new messenger for communication? Cell Res. https://doi.org/10.1186/s12986-018-0305-8 Chin AR, Fong MY, Somlo G et al (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26:217–228. https://doi.org/10.1038/cr.2016.13 Liu YC, Chen WL, Kung WH, Da HH (2017) Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genom. https://doi.org/10.1186/s12864-017-3502-3 Liang G, Zhu Y, Sun B et al (2014) Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2:380–388. https://doi.org/10.1002/fsn3.113 Wang W, Liu D, Zhang X et al (2018) Plant microRNAs in cross-kingdom regulation of gene expression. Int J Mol Sci 19:2007 Gebert LFR, Macrae IJ (2018) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-018-0045-7 Wang J, Mei J, Ren G (2019) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci. https://doi.org/10.3389/FPLS.2019.00360/FULL Jiang M, Sang X, Hong Z (2012) Beyond nutrients: food-derived microRNAs provide cross-kingdom regulation. BioEssays 34:280–284. https://doi.org/10.1002/bies.201100181 Ni Y, Jensen K, Kouskoumvekaki I, Panagiotou G (2017) Database tool NutriChem 2.0: exploring the effect of plant-based foods on human health and drug efficacy. Database 2017:44. https://doi.org/10.1093/database/bax044 Mlotshwa S, Pruss GJ, MacArthur JL et al (2015) A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Nat Publ Gr. https://doi.org/10.1038/cr.2015.25 Carney MC, Tarasiuk A, Diangelo SL et al (2017) Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Nat Publ Gr. https://doi.org/10.1038/pr.2017.54 Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741. https://doi.org/10.1373/clinchem.2010.147405 Zhou Q, Li M, Wang X et al (2012) Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 8:118–123 Zhou Z, Li X, Liu J et al (2015) Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 25:39–49. https://doi.org/10.1038/cr.2014.130 World Health Organization WHO Corona virus Dashboard Chauhan N, Jaggi M, Chauhan SC, Yallapu MM (2021) COVID-19: fighting the invisible enemy with microRNAs. Expert Rev Anti Infect Ther 19:137–145 Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8 Canatan D (2020) The impact of microRNAs (miRNAs) on the genotype of coronaviruses. Acta Biomed 91:195–198. https://doi.org/10.23750/abm.v91i2.9534 Zhou L-K, Zhou Z, Jiang X-M et al (2020) Cell discovery absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov 6:54. https://doi.org/10.1038/s41421-020-00197-3 Song KH, Li T, Owsley E, Chiang JYL (2010) A putative role of micro RNA in regulation of cholesterol 7α-hydroxylase expression in human hepatocytes. J Lipid Res 51:2223–2233. https://doi.org/10.1194/jlr.M004531 Komagata S, Nakajima M, Takagi S et al (2009) Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol 76:702–709. https://doi.org/10.1124/mol.109.056986 Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P (2008) Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 29:2394–2399. https://doi.org/10.1093/carcin/bgn209 Zhu H, Wu H, Liu X et al (2008) Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76:582–588. https://doi.org/10.1016/j.bcp.2008.06.007 Dong Z, Zhong Z, Yang L et al (2014) MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett 343:249–257. https://doi.org/10.1016/j.canlet.2013.09.034 Pan Y-Z, Zhou A, Hu Z, Yu A-M (2013) Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos. https://doi.org/10.1124/dmd.113.052092 Chen KC, Hsi E, Hu CY et al (2012) MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Investig Ophthalmol Vis Sci 53:2732–2739. https://doi.org/10.1167/iovs.11-9272 Jeon HM, Sohn YW, Oh SY et al (2011) ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 71:3410–3421. https://doi.org/10.1158/0008-5472.CAN-10-3340 Zhu Y, Yu F, Jiao Y et al (2011) Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 17:7105–7115. https://doi.org/10.1158/1078-0432.CCR-11-0071 Bruhn O, Lindsay M, Wiebel F et al (2020) Alternative polyadenylation of ABC transporters of the C-family (ABCC1, ABCC2, ABCC3) and implications on posttranscriptional micro-RNA regulations. Mol Pharmacol Mol Pharmacol 97:112–122. https://doi.org/10.1124/mol.119.116590 Dhuri K, Bechtold C, Quijano E et al (2020) Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 9:1–24 Title AC, Denzler R, Stoffel M (2015) Uptake and function studies of maternal milk-derived MicroRNAs. J Biol Chem 290:23680–23691. https://doi.org/10.1074/jbc.M115.676734 Chen X, Dai GH, Ren ZM et al (2016) Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. Biomed Res Int. https://doi.org/10.1155/2016/5413849 Pastrello C, Tsay M, Mcquaid R et al (2016) Circulating plant miRNAs can regulate human gene expression in vitro. Nat Publ Gr. https://doi.org/10.1038/srep32773 Hou D, He F, Ma L et al (2018) The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem 57:197–205. https://doi.org/10.1016/J.JNUTBIO.2018.03.026