Tiến bộ mới trong việc sử dụng lỗ chuyển tiếp tính thấm màng mitochondria trong các liệu pháp điều trị bệnh liên quan đến rối loạn chức năng mitochondria

Molecular and Cellular Biochemistry - Tập 476 - Trang 493-506 - 2020
Yuting Cui1, Mingyue Pan2, Jing Ma3, Xinhua Song1, Weiling Cao2, Peng Zhang2
1School of Life Science, Shandong University of Technology, Zibo, China
2Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, China
3The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China

Tóm tắt

Mitochondria có nhiều chức năng tế bào, bao gồm tổng hợp ATP, duy trì cân bằng canxi, lão hóa tế bào và cái chết. Sự rối loạn chức năng mitochondria đã được xác định trong nhiều rối loạn có liên quan đến sức khỏe con người. Trong số nhiều cơ chế tiềm ẩn của sự rối loạn chức năng mitochondria, việc mở ra lỗ chuyển tiếp tính thấm màng mitochondria (mPTP) là nguyên nhân đã thu hút sự quan tâm ngày càng tăng trong những năm gần đây. Nó đóng một vai trò quan trọng trong quá trình apoptosis và hoại tử; tuy nhiên, cấu trúc phân tử và chức năng của mPTP vẫn chưa được làm rõ hoàn toàn. Trong những năm gần đây, sự mở bất thường của mPTP đã được liên kết với sự phát triển và bệnh sinh của nhiều bệnh khác nhau bao gồm tổn thương thiếu máu/ tái tưới máu (IRI), các rối loạn thoái hóa thần kinh, khối u, và bệnh phổi mạn tính tắc nghẽn (COPD). Bài tổng quan này cung cấp một giới thiệu có hệ thống về cấu trúc phân tử có thể của mPTP và tóm tắt các bệnh có liên quan đến rối loạn chức năng mitochondria, đồng thời làm nổi bật các cơ chế tiềm ẩn có thể có. Vì mPTP là một mục tiêu quan trọng trong rối loạn chức năng mitochondria, bài tổng quan này cũng tóm tắt các phương pháp điều trị tiềm năng, có thể được sử dụng để ức chế mỡ mở ra thông qua các phân tử cấu thành các phức hợp mPTP, từ đó ức chế sự tiến triển của các bệnh liên quan đến rối loạn chức năng mitochondria.

Từ khóa

#mPTP #rối loạn chức năng mitochondria #phương pháp điều trị #bệnh liên quan đến mitochondria #apoptosis #hoại tử #bệnh phổi mạn tính tắc nghẽn #tổn thương thiếu máu/tái tưới máu #rối loạn thoái hóa thần kinh

Tài liệu tham khảo

Frey TG, Mannella CA (2000) The internal structure of mitochondria. TIBS 25:319–324. https://doi.org/10.1016/S0968-0004(00)01609-1 Crompton M, Costi A, Hayat Y (1987) Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 245:915–918. https://doi.org/10.1042/bj2450915 Zorov DB, Kinnally KW, Perini S et al (1992) Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. BBA 1105:263–270. https://doi.org/10.1016/0005-2736(92)90203-X Petronilli V, Szabi I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143. https://doi.org/10.1016/0014-5793(89)81513-3 Massari S, Azzone GF (1972) The equivalent pore radius of intact and damaged mitochondria and the mechanism of active shrinkage. BBA 283:23–29. https://doi.org/10.1016/0005-2728(72)90094-1 Morciano G, Bonora M, Campo G et al (2017) Mechanistic role of mPTP in ischemia-reperfusion injury. Mitochondrial Dyn Cardiovasc Med 982:169–189. https://doi.org/10.1007/978-3-319-55330-6_9 Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 426:1–7. https://doi.org/10.1016/j.ydbio.2017.04.018 Xue QG, Ling Z, Bei LL et al (2018) CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J Physiol Biochem 74:395–402. https://doi.org/10.1007/s13105-018-0627-z Kottke M, Adam V, Riesinger I et al (1988) Mitochondrial boundary membrane contact sites in brain: Points of hexokinase and creatine kinase location of control of Ca2+ transport. BBA 935:87–102. https://doi.org/10.1016/0005-2728(88)90111-9 Mcenery MW, Snowman AM, Trifiletti RR et al (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 89:3170–3174. https://doi.org/10.1073/pnas.89.8.3170 Kinnally KW, Zorov DB, Antonenko YN et al (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci USA 90:1374–1378. https://doi.org/10.1073/pnas.90.4.1374 Min-Jong K, Shadel GS (2016) A mitochondrial perspective of chronic obstructive pulmonary disease pathogenesis. Tubercul Respir Dis 79:207. https://doi.org/10.4046/trd.2016.79.4.207 Karch J, Kwong JQ, Burr AR et al (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772. https://doi.org/10.7554/eLife.00772 Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831. https://doi.org/10.1016/j.yjmcc.2009.02.021 Azarashvili T, Krestinina O, Baburina Y et al (2015) Combined effect of G3139 and TSPO ligands on Ca2+-induced permeability transition in rat brain mitochondria. Arch Biochem Biophys 587:70–77. https://doi.org/10.1016/j.abb.2015.10.012 Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. https://doi.org/10.1038/20959 Houštëk J, Pedersen PL (1985) Adenine nucleotide and phosphate transport systems of mitochondria-relative location of sulfhydryl groups based on the use of the novel fluorescent probe eosin-5-maleimide. J Biol Chem 260:6288–6295. https://doi.org/10.1016/0165-022X(85)90070-3 Fiore C, Trézéguet V, Saux AL et al (1998) The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80:137–150. https://doi.org/10.1016/s0300-9084(98)80020-5 Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria I. The protective mechanisms. Arch Biochem Biophys 195:453–459. https://doi.org/10.1016/0003-9861(79)90371-0 Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525. https://doi.org/10.2174/0929867033457278 Buchanan BB, Eiermann W, Riccio P et al (1976) Antibody evidence for different conformational states of ADP, ATP translocator protein isolated from mitochondria. Pro Natl Acad Sci USA 73:2280–2284. https://doi.org/10.2307/65754 Haworth RA, Hunter DR (2000) Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria. J Bioenerg Biomembr 32:91–96. https://doi.org/10.1023/A:1005568630151 Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. https://doi.org/10.1038/nature02229 Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160. https://doi.org/10.1042/bj2680153 Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. https://doi.org/10.1038/nature03434 Li HH, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7. https://doi.org/10.1016/s0014-5793(01)03314-2 Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120. https://doi.org/10.1007/BF01869662 Colombini M (2012) Mitochondrial outer membrane channels. Chem Rev 112:6373–6387. https://doi.org/10.1021/cr3002033 Mertins B, Psakis G, Lars-Oliver E (2014) Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol Chem 395:1435–1442. https://doi.org/10.1515/hsz-2014-0203 Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645. https://doi.org/10.1038/279643a0 Zoratti M, Szabò I (1995) The mitochondrial permeability transition. BBA 1241:139–176. https://doi.org/10.1002/biof.5520080315 Szabó I, Pinto VD, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules-II. the electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett 330:206–210. https://doi.org/10.1016/0014-5793(93)80274-x Szabó I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules-I. Binary structure and voltage dependence of the pore. FEBS Lett 330:201–205. https://doi.org/10.1016/0014-5793(93)80273-W Camara A-KS, Yi FZ, Po-Chao W et al (2017) Mitochondrial VDAC1: a key gatekeeper as potential therapeutic target. Front Physiol 8:460. https://doi.org/10.3389/fphys.2017.00460 Shanmughapriya S, Rajan S, Hoffman NE et al (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60:47–62. https://doi.org/10.1016/j.molcel.2015.08.009 Sampson MJ, Decker WK, Beaudet AL et al (2001) Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 276:39206–39212. https://doi.org/10.1074/jbc.M104724200 Paumard P, Vaillier J, Coulary B et al (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230. https://doi.org/10.1093/emboj/21.3.221 Alavian KN, Beutner G, Lazrove E et al (2014) An uncoupling channel within the c-subunit ring of the F1F0 ATP synthase is the mitochondrial permeability transition pore. PNAS 111:10580–10585. https://doi.org/10.1073/pnas.1401591111 Bonora M, Bononi A, Marchi ED et al (2013) Role of the c subunit of the F0 ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. https://doi.org/10.4161/cc.23599 Jiu YH, Carroll J, Shu JD et al (2017) Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. PNAS 114:9086–9091. https://doi.org/10.1073/pnas.1711201114 Neginskaya MA, Solesio ME, Berezhnaya EV et al (2019) ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore. Cell Rep 26:11–17.e12. https://doi.org/10.1016/j.celrep.2018.12.033 Bernardi P (2020) Mechanisms for Ca2+-dependent permeability transition in mitochondria. PNAS 117:2743–2744. https://doi.org/10.1073/pnas.1921035117 Walker JE, Carroll J, He J (2020) Reply to Bernardi: the mitochondrial permeability transition pore and the ATP synthase. PNAS 117:2745–2746. https://doi.org/10.1073/pnas.1921409117 Bernardi P, Rasola A, Forte M et al (2015) The mitochrondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155. https://doi.org/10.1152/physrev.00001.2015.-The Carrolla J, Hea J, Dinga S et al (2019) Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. PNAS 116:12816–12821. https://doi.org/10.1073/pnas.1904005116 Seifert EL, Ligeti E, Mayr JA et al (2015) The mitochondrial phosphate carrier: role in oxidative metabolism, calcium handling and mitochondrial disease. Biochem Bioph Res Commun 464:369–375. https://doi.org/10.1016/j.bbrc.2015.06.031 Leung A-WC, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323. https://doi.org/10.1074/jbc.M805235200 Varanyuwatana P, Halestrap AP (2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 12:120–125. https://doi.org/10.1016/j.mito.2011.04.006 Kwong F-NG, Nicholson AG, Harrison CL et al (2017) Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? Eur Respir Rev 26:170040. https://doi.org/10.1183/16000617.0040-2017 Gutiérrez-Aguilar M, Douglas DL, Gibson AK et al (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325. https://doi.org/10.1016/j.yjmcc.2014.04.008 Papadopoulos V, Baraldi M, Guilarte TR et al (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409. https://doi.org/10.1016/j.tips.2006.06.005 Casellas P, Galiegue S, Basile AS (2002) Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 40:475–486. https://doi.org/10.1016/S0197-0186(01)00118-8 Zeno S, Zaaroor M, Leschiner S et al (2009) CoCl2 induces apoptosis via the 18 kDa translocator protein in U118MG human glioblastoma cells. Biochemistry 48:4652–4661. https://doi.org/10.1021/bi900064t Morin D, Musman J, Pons S et al (2016) Mitochondrial translocator protein (TSPO): from physiology to cardioprotection. Biochem Pharmacol 105:1–13. https://doi.org/10.1016/j.bcp.2015.12.003 Azarashvili T, Grachev D, Krestinina O et al (2007) The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium 42:27–39. https://doi.org/10.1016/j.ceca.2006.11.004 Šileikytė J, Blachly-Dyson E, Sewell R et al (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18 kDa (TSPO)). J Biol Chem 289:13769–13781. https://doi.org/10.1074/jbc.M114.549634 Marzo I, Brenner C, Zamzami N et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187:1261–1271. https://doi.org/10.1084/jem.187.8.1261 Brenner C, Cadiou H, Vieira H-LA et al (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19:329–336. https://doi.org/10.1038/sj.onc.1203298 Dejean LM, Martinez-Caballero S, Liang G et al (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432. https://doi.org/10.1091/mbc.e04-12-1111 Geum-Hwa L, Hwa-Young L, Bo L et al (2014) Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci Rep-UK 4:5194. https://doi.org/10.1038/srep05194 Carlson EA, Rao VK, Yan S-SD (2013) From a cell's viewpoint: targeting mitochondria in Alzheimer's disease. Drug Discov Today Ther Strateg 10:e91–e98. https://doi.org/10.1016/j.ddstr.2014.04.002 Heng D, Lan G, Wen SZ et al (2011) Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 32:398–406. https://doi.org/10.1016/j.neurobiolaging.2009.03.003 Batarseh A, Papadopoulos V (2010) Regulation of translocator protein 18kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 327:1–12. https://doi.org/10.1016/j.mce.2010.06.013 Piper HM, García-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300. https://doi.org/10.1016/s0008-6363(98)00033-9 Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res 60:617–625. https://doi.org/10.1016/j.cardiores.2003.09.025 Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642. https://doi.org/10.1146/annurev.physiol.60.1.619 Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354. https://doi.org/10.1016/0022-2828(91)90181-k Davies LP, Huston V (1981) Peripheral benzodiazepine ninding sites in heart and their interaction with dipyridamole. Eur J Pharmacol 73:209–211. https://doi.org/10.1016/0014-2999(81)90092-3 Papadopoulos V, Miller WL (2012) Role of mitochondria in steroidogenesis. Best Pract Res Cl En 26:771–790. https://doi.org/10.1016/j.beem.2012.05.002 Surinkaew S, Chattipakorn S, Chattipakorn N (2011) Roles of mitochondrial benzodiazepine receptor in the heart. Can J Cardiol 27:262.e263–262.e213. https://doi.org/10.1016/j.cjca.2010.12.023 Motloch LJ, Jun H, Akar FG (2015) The mitochondrial translocator protein and arrhythmogenesis in ischemic heart disease. Oxid Med Cell Longev 2015:234104. https://doi.org/10.1155/2015/234104 Obame FN, Zini R, Souktani R et al (2007) Peripheral benzodiazepine receptor-induced myocardial protection is mediated by inhibition of mitochondrial membrane permeabilization. J Pharmacol Exp Ther 323:336–345. https://doi.org/10.1124/jpet.107.124255 Musman J, Paradis S, Panel M, et al (2017) A TSPO ligand prevents mitochondrial sterol accumulation and dysfunction during myocardial ischemia-reperfusion in hypercholesterolemic rats. Biochem Pharmacol 142:87–95. doi: https://doi.org/10.1016/j.bcp.2017.06.125 Paradis S, Leoni V, Caccia C et al (2013) Cardioprotection by the TSPO ligand 4′-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 98:420–427. https://doi.org/10.1093/cvr/cvt079 Tsamatsoulis M, Kapelios CJ, Katsaros L et al (2016) Cardioprotective effects of intracoronary administration of 4-chlorodiazepam in small and large animal models of ischemia-reperfusion. Int J Cardiol 224:90–95. https://doi.org/10.1016/j.ijcard.2016.09.011 Chunyan G, Li S, Xue PC et al (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009 Lan G, Heng D, Shi QY et al (2013) Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer’s neurons. PLoS ONE 8:e54914. https://doi.org/10.1371/journal.pone.0054914 Heng D, Yan S-SD (2010) Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell B 42:560–572. https://doi.org/10.1016/j.biocel.2010.01.004 Repalli J (2014) Translocator protein (TSPO) role in aging and Alzheimer's disease. Curr Aging Sci 7:168–175. https://doi.org/10.2174/1874609808666141210103146 Barichello T, Simões LR, Collodel A et al (2017) The translocator protein (18 kDa) and its role in neuropsychiatric disorders. Neurosci Biobehav R 83:183–199. https://doi.org/10.1016/j.neubiorev.2017.10.010 Christensen A, Pike CJ (2018) TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. Neurosci Lett 683:7–12. https://doi.org/10.1016/j.neulet.2018.06.029 Anne-Claire D, Largeau B, Ribeiro M-JS et al (2017) Translocator protein-18 kDa (TSPO) positron emission tomography (PET) Imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci 18:785. https://doi.org/10.3390/ijms18040785 Li W, Ke XC, Zi HN et al (2019) Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening. BioFactors 45:85–96. https://doi.org/10.1002/biof.1462 Rong Z, Guo BL, Qian Z et al (2018) Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells. Cell Death Dis 9:598. https://doi.org/10.1038/s41419-018-0641-7 NavaneethaKrishnan S, Rosales JL, Ki-Young L (2018) Loss of Cdk5 in breast cancer cells promotes ROS-mediated cell death through dysregulation of the mitochondrial permeability transition pore. Oncogene 37:1788–1804. https://doi.org/10.1038/s41388-017-0103-1 Basit F, Oppen L-MPE, Schöckel L et al (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8:e2716–e2716. https://doi.org/10.1038/cddis.2017.133 Rottenberg H, Hoek JB (2017) The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16:943–955. https://doi.org/10.1111/acel.12650 Arumugam P, Samson A, Ki J et al (2017) Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol 33:307–321. https://doi.org/10.1007/s10565-016-9378-1 Galiègue S, Casellas P, Kramar A et al (2004) Immunohistochemical assessment of the peripheral benzodiazepine receptor in breast cancer and its relationship with survival. Clin Cancer Res 10:2058–2064. https://doi.org/10.1158/1078-0432.CCR-03-0988 Unterrainer M, Fleischmann DF, Vettermann F et al (2019) TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative 18F-GE-180 PET study. Eur J Nucl Med Mol I 44:2230–2238. https://doi.org/10.1007/s00259-019-04491-5 Montagner D, Fresch B, Browne K et al (2016) A Cu(II) complex targeting the translocator protein: in vitro and in vivo antitumor potential and mechanistic insights. Chem Commun 53:134–137. https://doi.org/10.1039/c6cc08100b Ryter SW, Rosas IO, Owen CA et al (2018) Mitochondrial dysfunction as a pathogenic mediator of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Ann Am Thorac Soc 15:S266–S272. https://doi.org/10.1513/AnnalsATS.201808-585MG Jing M, Ya L, Su YL et al (2019) Bufei Jianpi granules reduce quadriceps muscular cell apoptosis by improving mitochondrial function in rats with chronic obstructive pulmonary disease. Evid-Based Compl ALT 2019:1–9. https://doi.org/10.1155/2019/1216305 Bhoola NH, Mbita Z, Hull R et al (2018) Translocator protein (TSPO) as a potential biomarker in human cancers. Int J Mol Sci 19:2176. https://doi.org/10.3390/ijms19082176 Nagler R, Ben-Izhak O, Savulescu D et al (2010) Oral cancer, cigarette smoke and mitochondrial 18kDa translocator protein (TSPO) - In vitro, in vivo, salivary analysis. BBA-Mol Basis Dis 1802:454–461. https://doi.org/10.1016/j.bbadis.2010.01.008 Caramori G, Ruggeri P, Mumby S et al (2019) Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Tar 23:539–553. https://doi.org/10.1080/14728222.2019.1615884 Das SK, Mukherjee S (1999) Role of peripheral benzodiazepine receptors on secretion of surfactant in guinea pig alveolar type II cells. Biosci Rep 19:461–471. https://doi.org/10.1023/A:1020272508250 Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256(257):107–115. https://doi.org/10.1023/b:mcbi.0000009862.17396.8d Szabadkai G, Bianchi K, Várnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. https://doi.org/10.1083/jcb.200608073 Gatliff J, East DA, Singh A et al (2017) A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis 8:e2896–e2896. https://doi.org/10.1038/cddis.2017.186 Puente-Maestu L, Pérez-Parra J, Godoy R et al (2009) Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 40:746–750. https://doi.org/10.1165/rcmb.2008-0289OC Homan EP, French ME, Morris PJ (1980) Effect of cyclosporin A upon the function of ischemically damaged renal autografts in the dog. Transplantation 30:228–230. https://doi.org/10.1097/00007890-198009000-00014 Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360 Chang-xiong Z, Cheng Y, Dao-zhou L et al (2019) Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnol 17:18. https://doi.org/10.1186/s12951-019-0451-9 Ynarong C, Yan KL, Hua LX et al (2017) Morin mitigates oxidative stress, apoptosis and inflammation in cerebral ischemic rats. Afr J Tradit Complem 14:348–355. https://doi.org/10.21010/ajtcam.v14i2.36 Shuang L, Nan W, Jia XM et al (2018) Protective effect of morin on myocardial ischemia-reperfusion injury in rats. Int J Mol Med 42:1379–1390. https://doi.org/10.3892/ijmm.2018.3743 Henderson P-JF, Lardy HA (1970) Bongkrekic acid-an inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem 245:1319–1326 Shug AL, Koke JR, Bittar N et al (1977) Atractyloside-induced myocardial cell injury. J Mol Cell Cardiol 9:489–497. https://doi.org/10.1016/S0022-2828(77)80028-X Hurst S, Hoek J, Shey-Shing S (2017) Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 49:27–47. https://doi.org/10.1007/s10863-016-9672-x Huang H, Song QL, Yong L et al (2019) Nutritional preconditioning of apigenin alleviates myocardial ischemia/reperfusion injury via the mitochondrial pathway mediated by Notch1/Hes1. Oxid Med Cell Longev 2019:1–15. https://doi.org/10.1155/2019/7973098 Meng YT, Yong YX, Yan M et al (2019) Resveratrol protects cardiomyocytes against anoxia/reoxygenation via dephosphorylation of VDAC1 by Akt-GSK3β pathway. Eur J Pharmacol 843:80–87. https://doi.org/10.1016/j.ejphar.2018.11.016 You-Cheng H, Thiyagarajan V, Ting-Tsz O et al (2017) CoQ0-induced mitochondrial PTP opening triggers apoptosis via ROS-mediated VDAC1 upregulation in HL-60 leukemia cells and suppresses tumor growth in athymic nude mice/xenografted nude mice. Arch Toxicol 92:301–322. https://doi.org/10.1007/s00204-017-2050-6 Papadopoulos V, Lecanu L (2009) Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma. Exp Neurol 219:53–57. https://doi.org/10.1016/j.expneurol.2009.04.016 Lejri I, Grimm A, Hallé F et al (2019) TSPO ligands boost mitochondrial function and pregnenolone synthesis. J Alzheimers Dis. https://doi.org/10.3233/jad-190127 Martin LJ, Fancelli D, Wong M et al (2014) GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 8:433. https://doi.org/10.3389/fncel.2014.00433 Richardson AP, Halestrap AP (2016) Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 473:1129–1140. https://doi.org/10.1042/bcj20160070 Chun-Wei L, Fan Y, Shi-Zhao C et al (2017) Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: the role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore. Cardiovasc Ther 35:3–9. https://doi.org/10.1111/1755-5922.12225 Yu XX, Yong GH, Zhi LC et al (2016) Tauroursodeoxycholic acid inhibits endoplasmic reticulum stress, blocks mitochondrial permeability transition pore opening, and suppresses reperfusion injury through GSK-3β in cardiac H9c2 cells. Am J Transl Res 8:4586–4597 Yang YW, Yong Y, Xin CW et al (2017) Tilianin post-conditioning attenuates myocardial ischemia/reperfusion injury via mitochondrial protection and inhibition of apoptosis. Med Sci Monitor 23:4490–4499. https://doi.org/10.12659/msm.903259 Chanoit G, Juan Z, Lee S et al (2011) Inhibition of phosphodiesterases leads to prevention of the mitochondrial permeability transition pore opening and reperfusion injury in cardiac H9c2 cells. Cardiovasc Drug Ther 25:299–306. https://doi.org/10.1007/s10557-011-6310-z Yan-Jie G, Su-Yan D, Xin-Xin C et al (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60:2161–2175. https://doi.org/10.1002/mnfr.201600111 Baev YA, Elustondo P, Negoda A et al (2018) Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques. Anal Biochem 552:38–44. https://doi.org/10.1016/j.ab.2017.07.006 Hen GS, Meng MW, Ting X (2019) Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on Nrf2 inhibition. J Cell Physiol 234:23774–23784. https://doi.org/10.1002/jcp.28945 Yan L, De JZ, Meng HL et al (2016) Shengmai Formula suppressed over-activated Ras/MAPK pathway in C. elegans by opening mitochondrial permeability transition pore via regulating cyclophilin D. Sci Rep-UK 6:38934. https://doi.org/10.1038/srep38934 Arrázola MS, Ramos-Fernández E, Cisternas P et al (2017) Wnt signaling prevents the Aβ oligomer-induced mitochondrial permeability transition pore opening preserving mitochondrial structure in hippocampal neurons. PLoS ONE 12:e0168840. https://doi.org/10.1371/journal.pone.0168840 Kim JE, Qun H, Ya QC et al (2014) mTOR-targeted therapy: differential perturbation to mitochondrial membrane potential and permeability transition pore plays a role in therapeutic response. Biochem Biophys Res Commun 447:184–191. https://doi.org/10.1016/j.bbrc.2014.03.124 Foster KA, Galeffi F, Gerich FJ et al (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79:136–171. https://doi.org/10.1016/j.pneurobio.2006.07.001 Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675. https://doi.org/10.1073/pnas.88.9.3671 Sick TJ, Perez-Pinzon MA (1999) Optical methods for probing mitochondrial function in brain slices. Methods 18:104–108. https://doi.org/10.1006/meth.1999.0763 Salvioli S, Ardizzoni A, Franceschi C et al (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82. https://doi.org/10.1016/s0014-5793(97)00669-8 Keil VC, Funke F, Zeug A et al (2011) Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch Eur J Physiol 462:693–708. https://doi.org/10.1007/s00424-011-1012-8 Arrazola MS, Inestrosa NC (2015) Monitoring mitochondrial membranes permeability in live neurons and mitochondrial swelling through electron microscopy analysis. Methods Mol Biol 1254:87–97. https://doi.org/10.1007/978-1-4939-2152-2_7 Hirano H, Parkhouse B, Nicolson GL et al (1972) Distribution of saccharide residues on membrane fragments from a myeloma-cell homogenate: its implications for membrane biogenesis. PNAS 69:2945–2949. https://doi.org/10.1073/pnas.69.10.2945 Lesnefsky EJ, Qun C, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118:1593–1611. https://doi.org/10.1161/CIRCRESAHA.116.307505 Trnka J, Elkalaf M, Andël M (2015) Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS ONE 10:e0121837. https://doi.org/10.1371/journal.pone.0121837 Morganti C, Bonora M, Ito K et al (2019) Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells. Stem Cell Res 40:101573. https://doi.org/10.1016/j.scr.2019.101573 Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206. https://doi.org/10.1016/j.cmet.2015.05.013 Briston T, Roberts M, Lewis S et al (2017) Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep-UK 7:10492. https://doi.org/10.1038/s41598-017-10673-8 Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385. https://doi.org/10.1016/s0008-6363(03)00533-9 Koopman W-JH, Nijtmans L-GW, Dieteren C-EJ et al (2010) Mammalian mitochondrial complex I-biogenesis, regulation, and reaction oxygen species generation. Antioxid Redox Sign 12:1431–1470. https://doi.org/10.1089/ars.2009.2743