Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation — a review
Tóm tắt
Besides producing a substantial portion of anthropogenic CO2 emissions, the industrial sector also generates significant quantities of solid residues. Mineral carbonation of alkaline wastes enables the combination of these two by-products, increasing the sustainability of industrial activities. On top of sequestering CO2 in geochemically stable form, mineral carbonation of waste materials also brings benefits such as stabilization of leaching, basicity and structural integrity, enabling further valorization of the residues, either via reduced waste treatment or landfilling costs, or via the production of marketable products. This paper reviews the current state-of-the-art of this technology and the latest developments in this field. Focus is given to the beneficial effects of mineral carbonation when applied to metallurgical slags, incineration ashes, mining tailings, asbestos containing materials, red mud, and oil shale processing residues. Efforts to intensify the carbonation reaction rate and improve the mineral conversion via process intensification routes, such as the application of ultrasound, hot-stage processing and integrated reactor technologies, are described. Valorization opportunities closest to making the transition from laboratory research to commercial reality, particularly in the form of shaped construction materials and precipitated calcium carbonate, are highlighted. Lastly, the context of mineral carbonation among the range of CCS options is discussed.
Tài liệu tham khảo
NOAA ESRL, Trends in Atmospheric Carbon Dioxide [Online], Available at: http://www.esrl.noaa.gov/gmd/ccgg/trends/history.html [accessed March 4, 2013]
Lackner K. S., Capture of carbon dioxide from ambient air, Eur. Phys. J. Special Topics, 2009, 176, 93–106
House K. Z., Baclig A. C., Ranjan M., van Nierop E. A. et al., Economic and energetic analysis of capturing CO2 from ambient air, PNAS, 2011, 108(51), 20428–20433
Lackner K. S., Brennan S., Matter J. M., Park A. — H. A. et al., The urgency of the development of CO2 capture from ambient air, PNAS, 2012, 109(33), 13156–13162
Goeppert A., Czaun M., Prakash G. K. S., Olah G. A., Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere, Energy Environ. Sci., 2012, 5(7), 7833–7853
Bennaceur K., Monea M., Sakurai S., Gupta N. et al., CO2 Capture and storage — A solution within, Oilfield Review, 2004, 16, 44–61
Lackner K. S., A Guide to CO2 Sequestration, Science, 2003, 300(5626), 1677–1678
Harvey O. R., Cantrell K. J., Qafoku N. P., Brown C. F., Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review, Report prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830, 2012
Paulley A., Maul P., Metcalfe R., Scenarios for Potential Impacts from Hypothetical Leakage from Geological Storage Facilities for Carbon Dioxide, Public deliverable from the RISCS project, 2012
Sipilä J., Teir S., Zevenhoven R., Carbon dioxide sequestration by mineral carbonation — Literature review update 2005-2007, ISBN 978-952-12-2036-4, 2008
Seifritz W., CO2 disposal by means of silicates, Nature, 1990, 345(6275), 486
Santos R. M., Van Gerven T., Process intensification routes for mineral carbonation, Greenhouse Gas Sci. Technol., 2011, 1(4), 287–293
Santos R. M., Verbeeck W., Knops P., Rijnsburger K. et al., Integrated mineral carbonation reactor technology for sustainable carbon dioxide sequestration: ‘CO2 Energy Reactor’, Energy Procedia, 2013a, doi:10.1016/j.egypro.2013.06.513
Van Gerven T., Leaching of Heavy Metals from Carbonated Waste-Containing Construction Material, PhD Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2005
Huijgen W. J. J., Carbon dioxide sequestration by mineral carbonation, PhD Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2007
Rawlins C. H., Geological Sequestration of Carbon Dioxide by Hydrous Carbonate Formation in Steelmaking Slag, PhD Thesis, Missouri University of Science and Technology, Rolla, Missouri, USA, 2008
Teir S., Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags, PhD Thesis, Helsinki University of Technology, Espoo, Finland, 2008
Uibu M., Abatement of CO2 emissions in Estonian oil shale-based power production, PhD Thesis, Tallinn University of Technology, Tallinn, Estonia, 2008
Costa G., Accelerated carbonation of minerals and industrial residues for carbon dioxide storage, PhD Thesis, Universitá Degli Studi Di Roma “Tor Vergata”, Rome, Italy, 2009.
Eloneva S., Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product, PhD Thesis, Aalto University, Espoo, Finland, 2010
Gunning P. J., Accelerated Carbonation of Hazardous Wastes, PhD Thesis, University of Greenwich, Chatham Maritime, United Kingdom, 2011
ACEME’10, Third International Conference on Accelerated Carbonation for Environmental and Materials Engineering [Online], Available at: http://web.abo.fi/fak/tkf/vt/aceme10/ [accessed March 4, 2013]
ACEME’13, Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering [Online], Available at: http://cit.kuleuven.be/aceme13/ [accessed March 4, 2013]
Bobicki E. R., Liu Q., Xu Z., Zeng H., Carbon capture and storage using alkaline industrial wastes, Prog. Energy Combust. Sci., 2012, 38, 302–320
Baciocchi R., Costa G., Bartolomeo E., Polettini A. et al., Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization, Waste Biomass Valorization, 2010a, 1, 467–477
Santos R. M., François D., Mertens G., Elsen J. et al., Ultrasound intensified mineral carbonation, Appl. Therm. Eng., 2013b, 57, 154–163
Bodor M., Santos R. M., Kriskova L., Elsen J. et al., Susceptibility of mineral phases of steel slags towards mineral carbonation: mineralogical, morphological and chemical assessment, Eur. J Mineral., 2013, doi:10.1127/0935-1221/2013/0025-2300
IPCC, Carbon Dioxide Capture and Storage — Summary for Policymakers, ISBN 92-9169-119-4, 2005
Huijgen W. J. J., Comans R. N. J., Witkamp G. -J., Cost evaluation of CO2 sequestration by aqueous mineral carbonation, Energy Convers Manage., 2007, 48, 1923–1935
Chang E. -E., Chen C. -H., Chen Y. -H., Pan S. — Y. et al., Performance evaluation for carbonation of steel-making slags in a slurry reactor, J. Hazard Mater., 2011, 186, 558–564
Chang E. -E., Chiu A. -C., Pan S. -Y., Chen Y. — H. et al., Carbonation of basic oxigen furnace slag with metalworking wastewater in a slurry reactor, Int. J. Greenhouse Gas Control, 2013, 12, 382–389
Gogate P. R., Sutkar V. S., Pandit A. B., Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems, Chem. Eng. J., 2011, 166, 1066–1082
Wagterveld R. M., Boels L., Mayer M. J., Witkamp G. J., Visualization of acoustic cavitation effects on suspended calcite crystals, Ultrason. Sonochem., 2011, 18, 216–225
Steinour H. H., Some effects of carbon dioxide on mortars and concrete-discussion, Concrete Briefs, J. Am. Concr. Inst., 1959, 55, 905–907
Doucet F. J., Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation, Miner. Eng., 2010, 23, 262–269
Reddy E. P., Smirniotis, P.G., High-temperature sorbents for CO2 made of alkali metals doped on CaO supports, J. Phys. Chem. B, 2004, 108, 7794–7800
Blamey J., Anthony E. J., Wang J., Fennell P. S., The calcium looping cycle for large-scale CO2 capture, Prog. Energy Combust. Sci., 2010, 36, 260–279
Manovic V., Anthony E. J., Lime-based sorbents for high-temperature CO2 capture-a review of sorbent modification methods, Int. J. Environ. Res. Public Health, 2010, 7, 3129–3140
Prigiobbe V., Polettini A., Baciocchi R., Gassolid carbonation kinetics of Air Pollution Control residues for CO2 storage, Chem. Eng. J., 2009, 148, 270–278.
Santos R. M., Ling D., Sarvaramini A., Guo M., Elsen J., Larachi F., Beaudoin G., Blanpain B., Van Gerven T., Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment, Chem. Eng. J., 2012, 203, 239–250
Bonfils B., Julcour-Lebigue C., Guyot F., Bodénan F., Chiquet P., Bourgeois F., Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives, Int. J. Greenhouse Gas Control, 2012, 9, 334–346.
Chiang Y. W., Santos R. M., Elsen J., Meesschaert B., Martens J. A., Van Gerven T., Two-way valorization of blast furnace slag into precipitated calcium carbonate and sorbent materials, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 355–365
Eloneva S., Teir S., Salminen J., Fogelholm C. — J., Zevenhoven R., Steel Converter Slag as a Raw Material for Precipitation of Pure Calcium Carbonate, Ind. Eng. Chem. Res., 2008, 47, 7104–7111
Eloneva S., Teir S., Revitzer H., Salminen J., Said A., Fogelholm C. -J., Zevenhoven, R., Reduction of CO2 Emissions from Steel Plants by Using Steelmaking Slags for Production of Marketable Calcium Carbonate, Steel Res. Int., 2009, 80(6), 415–421
Eloneva S., Mannisto P., Said A., Fogelholm C. -J., Zevenhoven R., Ammonium salt-based steelmaking slag carbonation: Precipitation of CaCO3 and ammonia losses assessment, Greenhouse Gas Sci. Technol., 2011, 1(4), 305–311
Huijgen W. J. J., Comans R. N. J., Carbonation of Steel Slag for CO2 Sequestration: Leaching of Products and Reaction Mechanisms, Environ Sci Technol., 2006, 40, 2790–2796
Topkaya Y., Sevinç N., Günaydın A., Slag treatment at Kardemir integrated iron and steel works, Int. J. Miner. Process., 2004, 74, 31–39
Dippenaar R., Industrial uses of slag (the use and re-use of iron and steelmaking slags), Ironmak Steelmak., 2005, 32, 35–46
Wang G., Wang Y., Gao Z., Use of steel slag as a granular material: volume expansion prediction and usability criteria, J. Hazard Mater., 2010, 184, 555–560
Emery J. J., Slag utilization in pavement construction, Extending Aggr. Resour., Astm. Spec. Tech. Publ., 1982, 774, 95–118
Mikhail S. A., Turcotte A. M., Thermal behaviour of basic oxygen furnace waste slag, Thermochim. Acta, 1995, 263, 87–94
Waligora J., Bulteel D., Degrugilliers P., Damidot D. et al., Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach, Mater. Charact., 2010, 61, 39–48
Huijgen W. J. J., Witkamp G. -J., Comans R. N. J., Mineral CO2 Sequestration by Steel Slag Carbonation, Environ. Sci. Technol., 2005, 39, 9676–9682
Chang E. -E., Pan S. -Y., Chen Y. -H., Tan C. — S. et al., Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed, J. Hazard Mater., 2012, 227–228, 97–106
van Zomeren A., van der Laan S. R., Kobesen H. B. A., Huijgen W. J. J., et al., Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure, Waste Manage., 2011, 31, 2236–2244
Isoo T., Takahashi T., Fukuhara M., Using carbonated steelmaking slag blocks to help reduce CO2, Am. Ceram. Soc. Bull., 2001, 80, 73–75
Yu J., Wang K., Study on characteristics of steel slag for CO2 capture, Energy Fuels, 2011, 25, 5483–5492
Saikia N., Cornelis G., Mertens G., Elsen J. et al., Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar, J. Hazard Mater., 2008, 154, 766–777
Baciocchi, R., Costa, G., Di Bartolomeo, E., Polettini, A. et al., Wet versus slurry carbonation of EAF steel slag, Greenhouse Gas Sci. Technol., 2011, 1, 312–319
Huaiwei H., Xin H., An overview for the utilization of wastes from stainless steel industries, Resour. Conserv. Recycl., 2011, 55, 745–754
Durinck D., Engström F., Arnout S., Heulens J. et al., Hot stage processing of metallurgical slags, Resour Conserv Recycl. 2008, 52, 1121–1131
Domínguez M. I., Romero-Sarria F., Centeno M. A., Odriozola J. A., Physicochemical Characterization and Use of Wastes from Stainless Steel Mill, Environ Prog Sustainable Energy 2010, 29, 471–480
Mayes W. M., Younger P. L., Aumônier J., Hydrogeochemistry of Alkaline Steel Slag Leachates in the UK, Water Air Soil Pollut., 2008, 195, 35–50
Pontikes Y., Jones P. T., Geysen D., Blanpain B., Options to prevent dicalcium silicate-driven disintegration of stainless steel slags, Arch. Metall. Mater. 2010, 55, 1167–1172
Vandevelde E., Mineral carbonation of stainless steel slag, Master’s Thesis, KU Leuven, Leuven, Belgium, 2010
Santos R. M., Ling D., Guo M., Blanpain B., Van Gerven T., Valorisation of thermal residues by intensified mineral carbonation, In: Proceedings of the 50th Conference of Metallurgists and the 6th International Symposium on Waste Recycling in Mineral and Metallurgical Industries (2–5 October 2011 Montreal Canada), 2011, art.nr. 47189
Van Bouwel J., Intensified aqueous mineral carbonation of alkaline industrial residues for CO2 storage and waste remediation: effect of process parameters on carbonation conversion, leaching behavior and mineralogy, Master’s Thesis, KU Leuven, Leuven, Belgium, 2012
Santos R. M., Van Bouwel J., Vandevelde E., Mertens G. et al., Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties, Int. J. Greenhouse Gas Control 2013c, 17, 32–45
Arickx S., Van Gerven T., Vandecasteele C., Accelerated carbonation for treatment of MSWI bottom ash, J. Hazard Mater., 2006, B137, 235–243
Van Gerven T., Van Keer E., Arickx S., Jaspers M. et al., Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling, Waste Manage., 2005, 25, 291–300
Costa G., Baciocchi R., Polettini A., Pomi R. et al., Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues, Environ. Monit. Assess., 2007, 135, 55–75
Rendek E., Ducom G., Germain P., Influence of organic matter on municipal solid waste incinerator bottom ash carbonation, Chemosphere, 2006a, 64, 1212–1218
Baciocchi R., Costa G., Lategano E., Marini C. et al., Accelerated carbonation of different size fractions of bottom ash from RDF incineration, Waste Manage., 2010b, 30, 1310–1317
Rendek E., Ducom G., Germain P., Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash, J. Hazard Mater., 2006b, B128, 73–79
Um N., Nam S. Y., Ahn J. W., Effect of accelerated carbonation on the leaching behavior of Cr in municipal solid waste incinerator bottom ash and the carbonation kinetics, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 529–533
Santos R. M., Mertens G., Salman M., Cizer Ö. et al., Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching, J. Environ. Manage., 2013d, 128, 807–821
Larachi F., Gravel J. -P., Grandjean B. P. A., Beaudoin G., Role of steam, hydrogen and pretreatment in chrysotile gas-solid carbonation: Opportunities for pre-combustion CO2 capture, Int. J. Greenhouse Gas Control, 2012, 6, 69–76
Assima G. P., Larachi F., Molson J., Beaudoin G., Assessment of the impact of seasonal temperature variations on the dynamics of CO2 mineral sequestration by nickel mining residues, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 245–254
Gerdemann S. J., O’Connor W. K., Dahlin D. C., Penner L. R. et al., Ex Situ Aqueous Mineral Carbonation, Environ Sci Technol., 2007, 41, 2587–2593
Gualtieri A. F., Cavenati C., Zanatto I., Meloni M. et al., The transformation sequence of cement-asbestos slates up to 1200°C and safe recycling of the reaction product in stoneware tile mixtures, J. Hazard Mater., 2008, 152, 563–570
Gualtieri A. F., Boccaletti M., Recycling of the product of thermal inertization of cement-asbestos for the production of concrete, Constr. Build Mater., 2011, 25, 3561–3569
Larachi F., Daldoul I., Beaudoin G., Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations, Geochim. Cosmochim. Acta, 2010, 74, 3051–3075
Ryu K. W., Chae S. C., Jang Y. N., Carbonation of chrysotile under subcritical conditions, Mater Trans., 2011a, 52(10), 1983–1988
Ryu K. W., Lee M. G., Jang Y. N., Mechanism of tremolite carbonation, Appl. Geochem., 2011b, 26, 1215–1221
Gadikota G., Natali C., Boschi C., Park A. — H. A., Carbonation of Asbestos for Permanent Storage of Anthropogenic CO2, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 255–264
Meyer N. A., Vogeli J., Becker M., Broadhurst J. L, et al., Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study from Lonmin, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 503–507
Gräfe M. Power G., Klauber C., Review of bauxite residue alkalinity and associated chemistry, CSIRO Document DMR-3610, May 2009
Si C., Ma Y., Lin C., Red mud as a carbon sink: Variability, affecting factors and environmental significance, J. Hazard Mater., 2013, 244–245, 54–59
Santini T. C., Hinz C., Rate A. W., Carter C. M. et al., In situ neutralization of uncarbonated bauxite residue mud by cross layer leaching with carbonated bauxite residue mud, J. Hazard Mater, 2011, 194, 119–127
Bonenfant D., Kharoune L., Sauvé S., Hausler R. et al., CO2 Sequestration by Aqueous Red Mud Carbonation at Ambient Pressure and Temperature, Ind. Eng. Chem. Res., 2008, 47, 7617–7622
Yadav V. S., Prasad M., Khan J., Amritphale S. S. et al., Sequestration of carbon dioxide (CO2) using red mud, J. Hazard Mater., 2010, 176, 1044–1050
Sahu R. C., Patel R. K., Ray B. C., Neutralization of red mud using CO2 sequestration cycle, J. Hazard Mater., 2010, 179, 28–34
Khaitan S., Dzombak D. A., Lowry G. V., Mechanisms of Neutralization of Bauxite Residue by Carbon Dioxide, J. Environ. Eng., 2009, 135, 433–438
Dilmore R., Lu P., Allen D., Soong Y. et al., Sequestration of CO2 in Mixtures of Bauxite Residue and Saline Wastewater, Energy Fuels, 2008, 22, 343–353
Soong Y., Dilmore R. M., Hedges S. W., Howard B. H. et al., Utilization of Multiple Waste Streams for Acid Gas Sequestration and Multi-Pollutant Control, Chem Eng Technol., 2012, 35(3), 473–481
Uibu M., Uus M., Kuusik R., CO2 mineral sequestration in oil-shale wastes from Estonian power production, J. Environ. Manage., 2009, 90, 1253–1260
Uibu M., Kuusik R., Mineral trapping of CO2 via oil shale ash aqueous carbonation: controlling mechanism of process rate and development of continuous-flow reactor system, Oil Shale, 2009, 26(1), 40–58
Uibu M., Velts O., Kuusik R., Developments in CO2 mineral carbonation of oil shale ash, J. Hazard Mater., 2010, 174, 209–214
Monkman S., Shao Y., Shi C., Carbonated Ladle Slag Fines for Carbon Uptake and Sand Substitute, J. Mater Civ Eng., 2009, 21(11), 657–665
Salman M., Cizer Ö., Pontikes Y., Vandewalle L. et al., Carbonation potential of continuous casting stainless steel slag, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April–12, 2013 Leuven Belgium), 2013, 317–327
Van Mechelen D., Quaghebeur M., Evlard J., Nielsen P. et al., Development of a pilot plant for mineral carbonation of waste materials, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 509–511
Baciocchi R., Costa G., Morone M., Polettini A. et al., Valorization of steel slag by a combined carbonation and granulation treatment, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 329–338
Gunning P., Hills C. D., Carey P. J., Commercial Application of Accelerated Carbonation: Looking Back at the First Year, In: Proceedings of the Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013, 185–192
Hills C. D., Carey P. J., Production of secondary aggregates, US Patent Application, 2009/0104349 A1, 2009
Gunning P. J., Hills C. D., Carey P. J., Production of lightweight aggregate from industrial waste and carbon dioxide, Waste Manage., 2009, 29, 2722–2728
Maroto-Valer M. M., Mineral carbonation: Developing decentralised CCS technologies, Keynote at Fourth International Conference on Accelerated Carbonation for Environmental and Materials Engineering (April 9–12, 2013 Leuven Belgium), 2013