Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer's disease

Medicinal Research Reviews - Tập 33 Số 1 - Trang 139-189 - 2013
Rafael León1, Antonio G. Garcı́a2,3, José Marco‐Contelles4
1Department of Chemistry, University of Cambridge, Cambridge, Lensfield road, Cambridge CB2 1EW, United Kingdom
2Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
3Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
4Laboratorio de Radicales Libres (IQOG, CSIC), C/Juan de la Cierva 3, 28006-Madrid Spain

Tóm tắt

With 27 million cases worldwide documented in 2006, Alzheimer's disease (AD) constitutes an overwhelming health, social, economic, and political problem to nations. Unless a new medicine capable to delay disease progression is found, the number of cases will reach 107 million in 2050. So far, the therapeutic paradigm one‐compound‐one‐target has failed. This could be due to the multiple pathogenic mechanisms involved in AD including amyloid β (Aβ) aggregation to form plaques, τ hyperphosphorylation to disrupt microtubule to form neurofibrillary tangles, calcium imbalance, enhanced oxidative stress, impaired mitochondrial function, apoptotic neuronal death, and deterioration of synaptic transmission, particularly at cholinergic neurons. Approximately 100 compounds are presently been investigated directed to single targets, namely inhibitors of β and γ secretase, vaccines or antibodies that clear Aβ, metal chelators to inhibit Aβ aggregation, blockers of glycogen synthase kinase 3β, enhancers of mitochondrial function, antioxidants, modulators of calcium‐permeable channels such as voltage‐dependent calcium channels, N‐methyl‐D‐aspartate receptors for glutamate, or enhancers of cholinergic neurotransmission such as inhibitors of acetylcholinesterase or butyrylcholinesterase. In view of this complex pathogenic mechanisms, and the successful treatment of chronic diseases such as HIV or cancer, with multiple drugs having complementary mechanisms of action, the concern is growing that AD could better be treated with a single compound targeting two or more of the pathogenic mechanisms leading to neuronal death. This review summarizes the current therapeutic strategies based on the paradigm one‐compound‐various targets to treat AD. A treatment that delays disease onset and/or progression by 5 years could halve the number of people requiring institutionalization and/or dying from AD.  © 2011 Wiley Periodicals, Inc. Med Res Rev

Từ khóa


Tài liệu tham khảo

Alzheimer A, 1906, Über einen eigenartigen schweren Erkrank ungsprozeß der Hirnrinde, Neurologisches Centralblatt, 23, 1129

10.1007/s00702-006-0578-3

10.1126/science.1132814

10.2174/138161206778792985

10.1038/nm0796-783

10.1038/nrn1434

Cummings JL, 2004, Treatment of Alzheimer's disease: Current and future therapeutic approaches, Rev Neurol Dis, 1, 60

10.1016/S1474-4422(03)00502-7

10.1016/S0197-4580(00)00191-3

10.1016/S0896-6273(00)80108-7

10.1016/S0301-0082(01)00011-9

10.1126/science.8346443

10.1212/01.WNL.0000128091.92139.0F

10.1073/pnas.0508693102

10.1124/mi.2.6.363

10.1016/S0896-6273(03)00850-X

10.1006/nbdi.2002.0483

10.1046/j.1471-4159.2003.02088.x

10.1111/j.0953-816X.2004.03365.x

Takashima A, 1996, Exposure of rat hippocampal neurons to amyloid beta peptide (25‐35) induces the inactivation of phosphatidyl inositol‐3 kinase and the activation of tau protein kinase I/glycogen synthase kinase‐3 beta, Neurosci Lett, 203, 33, 10.1016/0304-3940(95)12257-5

10.1016/S0168-0102(98)00061-3

10.1006/mcne.1997.0615

10.1126/science.318.5849.384

10.1016/j.neuron.2008.07.013

10.1111/j.1749-6632.1989.tb12485.x

10.1126/scisignal.3114pe10

10.1074/jbc.R109.080895

10.1111/j.1749-6632.1994.tb44398.x

10.1111/j.1749-6632.1993.tb23046.x

10.1016/j.neuron.2009.05.012

10.1016/j.neuropharm.2007.07.013

10.1021/jm800577j

10.1016/S1359-6446(03)02902-7

10.1038/nrd2199

10.1126/science.303.5665.1795

10.1126/science.1056072

10.1038/nature02636

10.1038/nature04568

10.1038/nrd2195

10.1016/j.cbpa.2003.12.007

10.1073/pnas.1337088100

10.1038/nrd2089

10.1038/nrd1609

10.1016/j.pharmthera.2005.11.006

10.1016/j.drudis.2006.11.008

10.1021/jm7009364

10.1038/nrd1346

10.1016/S0006-3223(02)01425-7

10.1016/S0014-2999(97)01393-9

Owens MJ, 1997, Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites, J Pharmacol Exp Ther, 283, 1305

Rauser L, 2001, Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5‐hydroxytryptamine(2C) receptor, J Pharmacol Exp Ther, 299, 83

10.1016/j.expneurol.2007.06.013

Sills MA, 1989, Tricyclic antidepressants and dextromethorphan bind with higher affinity to the phencyclidine receptor in the absence of magnesium and L‐glutamate, Mol Pharmacol, 36, 160

10.1124/jpet.107.132456

10.1213/01.ane.0000260310.63117.a2

10.1016/j.chembiol.2009.05.010

10.1186/1472-6904-5-3

Mendel DB, 2003, In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet‐derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship, Clin Cancer Res, 9, 327

10.1002/1097-0215(200102)9999:9999<::AID-IJC1143>3.0.CO;2-O

10.1126/stke.2252004pe12

10.1172/JCI9083

10.1038/437942a

10.1080/15604280214280

10.1016/S1359-6446(04)03163-0

10.1007/s007260070042

10.1016/j.tips.2004.11.007

10.1152/physrev.00023.2009

10.1021/jm901123n

10.1126/science.1072994

10.2174/187152708784936626

10.1016/j.expneurol.2009.09.011

10.1007/s11064‐010‐0371‐410.1007/s11064‐010‐0371‐4

10.2174/138161210790883769

10.1136/jnnp.66.2.137

10.1126/science.7058341

10.1212/WNL.51.1_Suppl_1.S36

10.1136/bmj.2.6150.1457

Buccafusco JJ, 2000, Multiple central nervous system targets for eliciting beneficial effects on memory and cognition, J Pharmacol Exp Ther, 295, 438

10.2165/00002512-199710030-00007

10.2165/00003495-200060050-00008

10.1016/S0149-2918(98)80127-6

10.2165/00002018-199819060-00004

10.1016/0887-2333(96)00034-3

10.1016/S0028-3908(99)00019-2

10.1002/gps.1402

Birks J, 2006, Donepezil for mild cognitive impairment, Cochrane Database Syst Rev, 3, CD006104

10.1002/14651858.CD005593

10.1159/000122962

Thatte U, 2005, Phenserine Axonyx, Curr Opin Investig Drugs, 6, 729

http://clinicaltrialsgov/ct2/show/NCT00568776. Accessed May 14 2010.

10.1212/01.WNL.0000265401.62434.36

10.2174/187152710791012026

10.1001/jama.289.21.2819

10.1212/WNL.43.8.1609

10.1212/WNL.53.1.197

10.1038/sj.npp.1300690

10.1212/01.wnl.0000260269.93245.d2

10.1001/archneur.2008.65.7.nct70006

10.1016/j.coph.2006.10.002

10.1016/S0166-4328(00)00197-2

10.1016/j.amjopharm.2009.06.003

10.1002/anie.200802808

10.1111/j.1471-4159.2007.05194.x

10.1038/nrd2959

10.1016/j.neuron.2009.06.026

10.1016/j.biopha.2008.02.005

10.1111/j.1582-4934.2008.00595.x

10.1185/03007990903209332

Inestrosa NC, 1996, Acetylcholinesterase is a senile plaque component that promotes assembly of amyloid beta‐peptide into Alzheimer's filaments, Mol Psychiatry, 1, 359

10.1038/399a023

10.1021/bi0101392

10.1016/S0006-2952(02)01514-9

10.1126/science.1678899

10.1016/S0969-2126(99)80040-9

10.1002/1098-2299(200007/08)50:3/4<573::AID-DDR41>3.0.CO;2-7

10.2174/092986706775527974

10.1039/a601642a

10.1002/jnr.490240220

Camps P, 2000, Huprine X is a novel high‐affinity inhibitor of acetylcholinesterase that is of interest for treatment of Alzheimer's disease, Mol Pharmacol, 57, 409

10.1007/BF01243353

10.1021/jm040787u

10.1074/jbc.271.39.23646

10.1016/S0304-3940(00)00905-8

10.1152/jn.2001.86.1.183

10.1074/jbc.M411085200

10.1111/j.1471-4159.2006.03960.x

10.1016/S0304-3940(00)01357-4

10.1021/jm701225u

10.1016/j.bbrc.2007.11.068

10.1016/S0960-894X(99)00396-0

10.1002/(SICI)1521-3773(20000515)39:10<1775::AID-ANIE1775>3.0.CO;2-Q

10.1021/ja021111w

10.1016/j.bmcl.2004.07.005

10.1016/S0960-894X(00)00059-7

10.1016/S0968-0896(98)00133-3

10.1021/jm0340602

10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4

10.1021/ja046382g

10.1002/med.10029

10.1016/0014-2999(94)90228-3

10.1021/jm9810452

10.1016/j.bmc.2007.07.003

10.1021/jm8002747

10.1021/jm8001313

10.1021/jm070154q

10.1038/nrn1035

10.1016/j.phrs.2003.11.017

10.1073/pnas.0508575102

10.1021/jm010914b

10.1042/bj3400283

10.1073/pnas.90.19.9031

10.1021/jm990224w

10.1021/jm0255668

10.1016/S0076-6879(99)09020-5

10.1074/jbc.M009596200

10.1111/j.1745-7254.2005.00045.x

10.1111/j.2042-7158.1986.tb04461.x

10.1021/jm801657v

10.1021/jm8009684

10.1021/jm021055

Available from:http://www.noscira.com

10.1038/nature02621

10.2174/1568007054546117

10.1073/pnas.96.20.11049

10.1111/j.1471-4159.2006.04215.x

10.1111/j.1471-4159.2006.04211.x

10.2165/00003495-200666160-00004

10.1016/j.bmcl.2007.09.100

10.1021/jm070100g

Drug Data Report2002; 24: 119 309 597 885.

10.2174/092986706777452489

10.1016/j.bmc.2008.12.067

10.1016/j.bmcl.2008.04.050

10.1021/jm0509142

10.1021/jm061046r

10.1016/j.bmcl.2007.12.028

10.1021/jm061242y

Radic Z, 1991, Role of the peripheral anionic site on acetylcholinesterase: Inhibition by substrates and coumarin derivatives, Mol Pharmacol, 39, 98

10.1093/emboj/cdg005

10.1002/anie.200501548

10.1016/j.cbi.2010.02.013

10.1007/s00216-007-1356-2

RosiniM AndrisanoV BartoliniM MelchiorreC.Organic compounds useful for the treatment of alzheimer's disease; their use and method of preparation.2006.

10.1021/jm050142

10.1002/anie.200700256

10.1021/jm049156q

10.1021/jm049112h

10.2174/138955706778742731

Beal MF, 2004, Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment, J Bioenerg Biomembr, 36, 381, 10.1023/B:JOBB.0000041772.74810.92

10.1177/153331750502000103

10.1016/j.nurt.2008.10.042

10.1016/S0076-6879(04)82021-4

10.3233/JAD-2010-1222

10.1016/0891-5849(89)90160-3

10.3233/JAD-2007-11202

10.1016/S1471-4914(01)02173-6

10.1016/S0143-4160(03)00128-3

10.1021/bi0501030

10.1074/jbc.M500526200

10.1111/j.1742-4658.2007.05918.x

10.1046/j.1471-4159.2000.0751219.x

10.1074/jbc.M100175200

10.1021/bi700508n

10.1016/j.pharmthera.2006.07.001

10.1016/j.bmcl.2008.03.073

10.1055/s-2000-9566

10.1021/jf0303924

10.1038/sj.bjp.0704047

10.1021/jf0305231

10.1021/jm050746d

10.1016/S0301-0082(98)00052-5

10.1016/j.neulet.2005.01.003

10.1002/cmdc.200800414

10.1007/s12640-009-9121-2

10.1006/exnr.2001.7717

10.1021/jm900628z

10.1016/S0960-894X(03)00081-7

10.1016/S0924-977X(98)00035-2

10.1016/0960-894X(96)00072-8

10.1007/s12031-008-9139-6

Available from:http://www.businesswire.com/news/home/20100414005702/en/Yissum‐Pontifax‐Clal‐Biotechnology‐Industries‐Invest‐9.2010.

10.1385/JMN:17:2:205

10.1146/annurev.ne.12.030189.002335

10.1002/(SICI)1097-4547(19980201)51:3<293::AID-JNR3>3.0.CO;2-B

10.1523/JNEUROSCI.12-02-00376.1992

10.1074/jbc.M102334200

10.1016/j.bmc.2004.11.020

10.1124/jpet.104.068189

10.1021/jm061047j

10.1021/jm801292b

10.1016/S0960-894X(97)10165-2

10.1016/S0968-0896(01)00378-9

10.1016/S0968-0896(00)00284-4

10.1002/1521-4184(200209)335:7<347::AID-ARDP347>3.0.CO;2-G

10.1016/j.tetlet.2004.05.039

10.1016/j.bmc.2004.02.017

10.1016/j.ejmech.2006.06.016

10.1016/j.bmc.2008.07.005

10.1016/j.ejmech.2007.06.001

10.1016/j.bmc.2006.09.025

10.1111/j.1476-5381.1979.tb08695.x

10.1038/309069a0

10.1016/j.biocel.2009.03.015

10.1016/S0006-2952(98)00275-5

10.1042/0264-6021:3430419

10.1021/np050312l

10.1016/j.bmcl.2006.08.067

10.1021/jm1000024

10.1124/mol.106.024661

10.2174/1568007033482670

10.1016/j.ejphar.2003.08.025

10.1073/pnas.0631749100

10.1021/jm901614b

10.1021/jm031019q

10.1021/jm040843r

10.1159/000113712

10.1007/s12031-002-0025-3

10.1046/j.1471-4159.1996.66020877.x

10.1021/jm901616h

10.1097/00002093-199812000-00010

10.1021/ol026418e

10.1016/S0968-0896(03)00091-9

10.1248/cpb.58.273

10.2174/1568007033482760

10.1016/j.bmc.2007.12.048

10.1016/j.jmgm.2005.10.005

Engelberts I, 1991, The interrelation between TNF, IL‐6, and PAF secretion induced by LPS in an in vivo and in vitro murine model, Lymphokine Cytokine Res, 10, 127

10.1001/archsurg.1997.01430360088016

10.1016/j.neuropharm.2006.02.015

10.1016/0929-7855(95)00053-4

10.1017/S1461145705006425

10.1016/j.neulet.2005.07.026

10.1017/S1461145709000455

10.3233/JAD-2008-15208

10.1016/S0301-0082(03)00089-3

10.1074/jbc.M402248200

10.1046/j.1474-9728.2003.00069.x

10.1016/S0074-7696(06)54005-7

10.1038/416535a

10.1038/nn1503

http://clinicaltrials.gov/ct2/show/NCT00621010?term=ZPQ‐21166&rank=1. Accesed on May 27 2010.

10.1124/jpet.102.034249

10.1016/j.neuropharm.2007.06.016

http://www.neuronetrix.com/investors_files/Neuronetrix%20Business%20Plan.pdf.2011.

Short Term Effects of PRX‐03140 in Patients With Mild Alzheimer's Disease Being Treated With Aricept;http://clinicaltrials.gov/ct2/show/NCT00384423?term=PRX‐03140&rank=1. Accessed on February 15 2011. 2011.

10.1038/35102591

10.1016/S0006-2952(01)00822-X

10.1074/jbc.272.6.3406

10.1016/j.nurt.2008.05.003

10.1021/jm1003073

10.1021/jm960320m

10.1021/jm801327q

10.1016/S0074-7742(08)60302-5

10.1016/j.tins.2009.06.002

10.1002/cmdc.200900045

10.1021/jm020350r

10.1016/S0960-894X(01)00671-0

10.1523/JNEUROSCI.1521-05.2005

10.1074/jbc.M806154200

10.1038/nsmb.1437

10.1021/jm031044w

Kojima Y, 2002, Recurrent herpes simplex virus type 2 meningitis: A case report of Mollaret's meningitis, Jpn J Infect Dis, 55, 85

Tsuji A, 2002, Maternity testing using mitochondrial DNA analysis, Fukuoka Igaku Zasshi, 93, 85

Tsuji K, 2002, Effect of (+/−)‐pindolol on the central 5‐HT1A receptor by the use of in vivo microdialysis and hippocampal slice preparations, Nihon Shinkei Seishin Yakurigaku Zasshi, 22, 85

10.1016/S0006-291X(02)00839-2

10.1021/jo052368q

10.1016/0891-5849(94)00110-6

10.1021/jm061173n

10.2174/156720508785132307

10.1111/j.1471-4159.1992.tb09432.x

10.1038/nrn2194

10.1254/jphs.08R29FM

10.1002/cbic.200900666

10.1021/jm800109e

10.1038/nature05348

10.1021/ar0201198

Efficacy study of oral seliciclib to treat non‐small cell lung cancer.http://clinicaltrials.gov/ct2/show/NCT00372073?term=Seliciclib&rank=2Accessed on December 06 2010.

A study of oral sapacitabine and oral seliciclib in patients with advanced solid tumors.http://clinicaltrials.gov/ct2/show/NCT00999401?term=roscovitine&rank=1Accessed on December 06 2010.

10.1042/bj20021535

10.2174/1568026023393291

10.1016/j.pep.2007.02.020

10.1073/pnas.0611236104

10.1002/med.20119

http://clinicaltrials.gov/ct2/results?term=Noscira; Accessed on May 30 2010.

10.1523/JNEUROSCI.1004-07.2007

10.1074/jbc.M207435200

10.1016/j.cbpa.2008.02.019

10.1136/bmj.2.5319.1573

10.1001/archneur.60.12.1685

10.1021/ja064806w

10.1124/pr.57.4.2

10.1002/anie.200603866

10.1021/jm00030a005

10.1039/an9952000845

10.1039/b902545f

10.1021/jm900504c

10.1096/fj.07-8627rev

10.1021/cn100069c

10.1021/ja806062g

10.1021/ja907045h

Newberg AB, 2006, Safety, biodistribution, and dosimetry of 123I‐IMPY: a novel amyloid plaque‐imaging agent for the diagnosis of Alzheimer's disease, J Nucl Med, 47, 748

10.1016/j.mibio.2003.09.003

10.1083/jcb.200301115

10.1038/nature01640

10.1021/cr9000176

10.1111/j.1471-4159.2009.06562.x

Choi RC, 2010, A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid‐beta‐induced neurotoxicity in cultured neurons: Signaling transduction and drug development for Alzheimer's disease, J Alzheimers Dis, 19, 795, 10.3233/JAD-2010-1293

10.1007/s11064-008-9900-9

10.3233/JAD-2008-15207

10.3233/JAD-2008-14209

10.1016/j.cbpa.2006.06.014