Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design

Materials Horizons - Tập 4 Số 6 - Trang 945-976
Xiaoyi Cai1,2,3,4, Linfei Lai1,5,6,7,8, Jianyi Lin1,2,3,4, Zhongxiang Shen1,2,3,4
1Energy Research Institute @ NTU (ERIAN), Nanyang Technological University, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141, Singapore
2Nanyang Technological University
3Singapore
4Singapore 637141
5Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
6Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
7Nanjing 211816
8P. R. China

Tóm tắt

This review addresses the importance of the air–electrode structure and the microstructures of the catalyst for rechargeable zinc–air batteries.

Từ khóa


Tài liệu tham khảo

S. W. D. R. Stacy and C.Davis , Transportation Energy Data Book Edition 34 , Oak Ridge National Laboratory , 2015

Rahman, 2013, J. Electrochem. Soc., 160, A1759, 10.1149/2.062310jes

Goodenough, 2010, Chem. Mater., 22, 587, 10.1021/cm901452z

Thackeray, 2012, Energy Environ. Sci., 5, 7854, 10.1039/c2ee21892e

T. B. Reddy and D.Linden , Linden's Handbook of Batteries , McGraw-Hill , New York , 4th edn, 2011

Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010

Wang, 2014, Chem. Soc. Rev., 43, 7746, 10.1039/C3CS60248F

Hu, 2016, Angew. Chem., Int. Ed., 55, 11736, 10.1002/anie.201509982

Liu, 2015, Electrocatalysis, 6, 132, 10.1007/s12678-014-0243-9

Stacy, 2017, Renewable Sustainable Energy Rev., 69, 401, 10.1016/j.rser.2016.09.135

Wu, 2015, ChemSusChem, 8, 2772, 10.1002/cssc.201500373

Zheng, 2012, Small, 8, 3550, 10.1002/smll.201200861

Cheng, 2015, Prog. Nat. Sci., 25, 545, 10.1016/j.pnsc.2015.11.008

Osgood, 2016, Nano Today, 11, 601, 10.1016/j.nantod.2016.09.001

Zhu, 2017, Small, 13, 1603793, 10.1002/smll.201603793

Jun, 2016, ChemElectroChem, 3, 511, 10.1002/celc.201500382

Bai, 2016, New J. Chem., 40, 1679, 10.1039/C5NJ02892B

Zhu, 2016, Asia-Pac. J. Chem. Eng., 11, 338, 10.1002/apj.2000

Ma, 2015, J. Power Sources, 274, 56, 10.1016/j.jpowsour.2014.10.030

Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48

Neburchilov, 2010, J. Power Sources, 195, 1271, 10.1016/j.jpowsour.2009.08.100

Zhu, 2011, Electrochim. Acta, 56, 5080, 10.1016/j.electacta.2011.03.082

Schroder, 2014, Electrochim. Acta, 117, 541, 10.1016/j.electacta.2013.11.116

Drillet, 2001, Phys. Chem. Chem. Phys., 3, 368, 10.1039/b005523i

Schroder, 2015, J. Appl. Electrochem., 45, 427, 10.1007/s10800-015-0817-0

Singh, 2015, ACS Appl. Mater. Interfaces, 7, 21138, 10.1021/acsami.5b04865

Li, 2015, Int. J. Electrochem. Sci., 10, 5395, 10.1016/S1452-3981(23)17263-4

Li, 2015, Nanoscale, 7, 1830, 10.1039/C4NR05988C

An, 2015, RSC Adv., 5, 75773, 10.1039/C5RA11047E

Du, 2013, Nanoscale, 5, 4657, 10.1039/c3nr00300k

Cao, 2003, J. Electroanal. Chem., 557, 127, 10.1016/S0022-0728(03)00355-3

Li, 2015, Chem. Commun., 51, 8841, 10.1039/C5CC01999K

Prabu, 2014, Nanoscale, 6, 3173, 10.1039/c3nr05835b

Lee, 1997, J. Electrochem. Soc., 144, 3801, 10.1149/1.1838095

Ferreira, 2004, Science, 303, 1831, 10.1126/science.1093087

Bergmann, 2013, Energy Environ. Sci., 6, 2745, 10.1039/c3ee41194j

Burke, 2015, Chem. Mater., 27, 7549, 10.1021/acs.chemmater.5b03148

Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008

Antolini, 2014, ACS Catal., 4, 1426, 10.1021/cs4011875

Hickling, 1947, Discuss. Faraday Soc., 1, 236, 10.1039/df9470100236

Trasatti, 1984, Electrochim. Acta, 29, 1503, 10.1016/0013-4686(84)85004-5

Lyons, 2010, J. Electroanal. Chem., 641, 119, 10.1016/j.jelechem.2009.11.024

Fabbri, 2014, Catal. Sci. Technol., 4, 3800, 10.1039/C4CY00669K

Forgie, 2010, Electrochem. Solid-State Lett., 13, B36, 10.1149/1.3290735

Costanzo, 2016, Phys. Chem. Chem. Phys., 18, 7490, 10.1039/C5CP06905J

Mirzakulova, 2012, Nat. Chem., 4, 794, 10.1038/nchem.1439

Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390

Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A

Jörissen, 2006, J. Power Sources, 155, 23, 10.1016/j.jpowsour.2005.07.038

Tian, 2007, Science, 316, 732, 10.1126/science.1140484

Sheng, 2016, Acc. Chem. Res., 49, 2569, 10.1021/acs.accounts.6b00485

Zhang, 2015, Science, 349, 412, 10.1126/science.aab0801

Li, 2014, Energy Environ. Sci., 7, 4061, 10.1039/C4EE01564A

Greeley, 2009, Nat. Chem., 1, 552, 10.1038/nchem.367

Stamenkovic, 2007, Science, 315, 493, 10.1126/science.1135941

Chen, 2014, Science, 343, 1339, 10.1126/science.1249061

Zhang, 2007, Science, 315, 220, 10.1126/science.1134569

Shen, 2017, Phys. Chem. Chem. Phys., 19, 12628, 10.1039/C7CP01817G

Jiang, 2014, Phys. Chem. Chem. Phys., 16, 20360, 10.1039/C4CP03151B

Norskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Liu, 2016, Coord. Chem. Rev., 315, 153, 10.1016/j.ccr.2016.02.002

Bezerra, 2008, Electrochim. Acta, 53, 4937, 10.1016/j.electacta.2008.02.012

Jasinski, 1964, Nature, 201, 1212, 10.1038/2011212a0

Gupta, 1987, J. Electrochem. Soc., 134, C129

Jaouen, 2007, J. Phys. Chem. C, 111, 5963, 10.1021/jp068273p

Silva, 2013, J. Am. Chem. Soc., 135, 7823, 10.1021/ja402450a

Wu, 2011, Science, 332, 443, 10.1126/science.1200832

Coutanceau, 1995, Electrochim. Acta, 40, 2739, 10.1016/0013-4686(95)00263-E

Nallathambi, 2008, J. Power Sources, 183, 34, 10.1016/j.jpowsour.2008.05.020

Bezerra, 2008, Electrochim. Acta, 53, 7703, 10.1016/j.electacta.2008.05.030

Malinauskas, 1999, Synth. Met., 107, 75, 10.1016/S0379-6779(99)00170-8

Zhang, 2013, Electrochim. Acta, 87, 599, 10.1016/j.electacta.2012.10.019

Zhao, 2005, Electrochem. Commun., 7, 1405, 10.1016/j.elecom.2005.09.032

Zhang, 2010, Int. J. Hydrogen Energy, 35, 8295, 10.1016/j.ijhydene.2009.12.015

Zhang, 2012, Int. J. Hydrogen Energy, 37, 13219, 10.1016/j.ijhydene.2012.03.049

Luo, 2011, J. Mater. Chem., 21, 8038, 10.1039/c1jm10845j

Cai, 2017, J. Mater. Chem. A, 5, 2488, 10.1039/C6TA09615H

Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j

Tseung, 1977, Electrochim. Acta, 22, 31, 10.1016/0013-4686(77)85049-4

Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008

Rossmeisl, 2005, Chem. Phys., 319, 178, 10.1016/j.chemphys.2005.05.038

Ardizzone, 1990, Electrochim. Acta, 35, 263, 10.1016/0013-4686(90)85068-X

Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608

Cheng, 2010, Chem. Mater., 22, 898, 10.1021/cm901698s

Vorkapić, 1973, J. Appl. Electrochem., 4, 271

Mao, 2002, J. Electrochem. Soc., 149, A504, 10.1149/1.1461378

Cheng, 2010, Chem. Mater., 22, 898, 10.1021/cm901698s

Lima, 2006, J. Electroanal. Chem., 590, 152, 10.1016/j.jelechem.2006.02.029

Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Dai, 2016, Nano Energy, 27, 185, 10.1016/j.nanoen.2016.07.007

Rios, 1998, Electrochim. Acta, 44, 1491, 10.1016/S0013-4686(98)00272-2

Shao, 2004, Nature, 431, 170, 10.1038/nature02863

Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858

Shim, 2015, J. Appl. Electrochem., 45, 1005, 10.1007/s10800-015-0868-2

Weidenkaff, 2002, Chem. Mater., 14, 1797, 10.1021/cm011305v

Lee, 2014, J. Taiwan Inst. Chem. Eng., 45, 2334, 10.1016/j.jtice.2014.05.023

Jung, 2015, Adv. Mater., 27, 266, 10.1002/adma.201403897

Matsumoto, 1977, J. Electroanal. Chem., 79, 319, 10.1016/S0022-0728(77)80453-1

Yasumichi, 1978, Bull. Chem. Soc. Jpn., 51, 1927, 10.1246/bcsj.51.1927

Goodenough, 1990, J. Am. Chem. Soc., 112, 2076, 10.1021/ja00162a006

Horowitz, 1983, J. Electrochem. Soc., 130, 1851, 10.1149/1.2120111

Oh, 2012, Nat. Chem., 4, 1004, 10.1038/nchem.1499

Park, 2017, Energy Environ. Sci., 10, 129, 10.1039/C6EE03046G

Wiggins-Camacho, 2011, J. Phys. Chem. C, 115, 20002, 10.1021/jp205336w

Zhang, 2014, Chem. Commun., 50, 6382, 10.1039/c4cc01939c

Ma, 2015, Angew. Chem., Int. Ed., 54, 4646, 10.1002/anie.201411125

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Sun, 2013, Chem. Commun., 49, 10296, 10.1039/c3cc45480k

Sun, 2013, ACS Catalysis, 3, 1726, 10.1021/cs400374k

Jin, 2014, ACS Nano, 8, 3313, 10.1021/nn404927n

Choi, 2012, ACS Nano, 6, 7084, 10.1021/nn3021234

Yang, 2011, Angew. Chem., Int. Ed., 50, 7132, 10.1002/anie.201101287

Gong, 2009, Science, 323, 760, 10.1126/science.1168049

Lu, 2015, J. Am. Chem. Soc., 137, 2901, 10.1021/ja509879r

Ma, 2014, Angew. Chem., Int. Ed., 53, 7281, 10.1002/anie.201403946

Tian, 2014, ChemSusChem, 7, 2125, 10.1002/cssc.201402118

Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608

Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715

Tian, 2017, J. Mater. Chem. A, 5, 7103, 10.1039/C6TA10505J

Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390

Yang, 2011, J. Am. Chem. Soc., 133, 206, 10.1021/ja108039j

Li, 2012, Nat. Nanotechnol., 7, 394, 10.1038/nnano.2012.72

Wen, 2014, Angew. Chem., Int. Ed., 53, 6496, 10.1002/anie.201402574

Aijaz, 2016, Angew. Chem., Int. Ed., 55, 4087, 10.1002/anie.201509382

Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553

Xia, 2016, Nat. Energy, 1, 15006, 10.1038/nenergy.2015.6

Zhao, 2017, Coord. Chem. Rev., 337, 80, 10.1016/j.ccr.2017.02.010

Guo, 2016, Science, 351, 361, 10.1126/science.aad0832

Park, 2014, Phys. Chem. Chem. Phys., 16, 103, 10.1039/C3CP54311K

Ge, 2015, ACS Catalysis, 5, 4643, 10.1021/acscatal.5b00524

Sawant, 2017, Int. J. Mol. Sci., 18, 25, 10.3390/ijms18010025

Wu, 2016, Nano Energy, 29, 83, 10.1016/j.nanoen.2015.12.032

Liu, 2015, Electrocatalysis, 6, 132, 10.1007/s12678-014-0243-9

Poux, 2014, ChemPhysChem, 15, 2108, 10.1002/cphc.201402022

Zhang, 2013, Acta Chim. Sin., 71, 1101, 10.6023/A13030276

Gu, 2014, ChemCatChem, 6, 67, 10.1002/cctc.201300493

Liu, 2008, J. Am. Chem. Soc., 130, 5390, 10.1021/ja7106146

Yang, 2012, Chem. Mater., 24, 464, 10.1021/cm202554j

Su, 2013, Chem. Sci., 4, 2941, 10.1039/c3sc51052b

Chen, 2015, Adv. Mater., 27, 5010, 10.1002/adma.201502315

Wang, 2016, Nano Energy, 30, 368, 10.1016/j.nanoen.2016.10.017

Zhang, 2014, Nanoscale, 6, 6590, 10.1039/C4NR00348A

Pandiaraj, 2014, Chem. Commun., 50, 3363, 10.1039/C3CC47620K

Song, 2017, Small, 13, 1700238, 10.1002/smll.201700238

Zhu, 2016, Adv. Mater., 28, 6391, 10.1002/adma.201600979

Zhong, 2014, Angew. Chem., Int. Ed., 53, 14235, 10.1002/anie.201408990

Zhao, 2014, ACS Nano, 8, 12660, 10.1021/nn505582e

Wang, 2016, Nano Energy, 25, 110, 10.1016/j.nanoen.2016.04.042

Wang, 2014, J. Mater. Chem. A, 2, 14064, 10.1039/C4TA01506A

Strickland, 2015, Nat. Commun., 6, 7343, 10.1038/ncomms8343

Li, 2016, J. Mater. Chem. A, 4, 15836, 10.1039/C6TA06434E

Zhang, 2016, J. Mater. Chem. A, 4, 17288, 10.1039/C6TA06185K

You, 2015, ACS Catalysis, 5, 7068, 10.1021/acscatal.5b02325

Shang, 2016, Adv. Mater., 28, 1668, 10.1002/adma.201505045

Liu, 2016, J. Mater. Chem. A, 4, 11357, 10.1039/C6TA03265F

Li, 2015, Small, 11, 1443, 10.1002/smll.201402069

Dou, 2016, Chem. Commun., 52, 9727, 10.1039/C6CC05244D

Zhu, 2003, J. Appl. Electrochem., 33, 29, 10.1023/A:1022986707273

Watanabe, 1985, J. Electroanal. Chem. Interfacial Electrochem., 195, 81, 10.1016/0022-0728(85)80007-3

Maja, 2000, Electrochim. Acta, 46, 423, 10.1016/S0013-4686(00)00601-0

Watanabe, 1985, J. Electroanal. Chem., 195, 81, 10.1016/0022-0728(85)80007-3

Tomantschger, 1989, J. Power Sources, 25, 195, 10.1016/0378-7753(89)80004-7

Uchida, 1996, J. Electrochem. Soc., 143, 2245, 10.1149/1.1836988

Shinde, 2017, ACS Nano, 11, 347, 10.1021/acsnano.6b05914

Guo, 2016, J. Mater. Chem. A, 4, 6282, 10.1039/C6TA02030E

Park, 2013, J. Power Sources, 243, 267, 10.1016/j.jpowsour.2013.06.025

Gupta, 2011, J. Solid State Electrochem., 16, 1585, 10.1007/s10008-011-1559-5

Patra, 2016, Nano Energy, 30, 118, 10.1016/j.nanoen.2016.10.006

Lee, 2013, J. Electrochem. Soc., 160, F910, 10.1149/2.016309jes

Luo, 2015, Small, 11, 2817, 10.1002/smll.201403535

Cheng, 2016, J. Mater. Chem. A, 4, 18240, 10.1039/C6TA07414F

Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715

Eom, 2008, J. Electroceram., 23, 382, 10.1007/s10832-008-9472-8

Chaparro, 2014, J. Electrochem. Soc., 161, E3078, 10.1149/2.012408jes

Lee, 2016, Adv. Energy Mater., 6, 1601052, 10.1002/aenm.201601052

Tian, 2017, ACS Appl. Mater. Interfaces, 9, 7125, 10.1021/acsami.6b15235

Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715

Wei, 2014, Angew. Chem., Int. Ed., 53, 1570, 10.1002/anie.201307319

Sun, 2012, J. Mater. Chem., 22, 12810, 10.1039/c2jm31525d

Liang, 2014, Nat. Commun., 5, 4973, 10.1038/ncomms5973

Liang, 2012, Angew. Chem., Int. Ed., 51, 3892, 10.1002/anie.201107981

Liang, 2015, Nano Energy, 11, 366, 10.1016/j.nanoen.2014.11.008

Fu, 2017, Adv. Energy Mater., 7, 1601172, 10.1002/aenm.201601172

Li, 2015, Energy Environ. Sci., 8, 3274, 10.1039/C5EE02616D

Pei, 2017, Energy Environ. Sci., 10, 742, 10.1039/C6EE03265F

Pei, 2016, J. Mater. Chem. A, 4, 12205, 10.1039/C6TA03588D

Cai, 2015, J. Mater. Chem. A, 3, 22043, 10.1039/C5TA05961E

Wang, 2016, Nanoscale, 8, 11398, 10.1039/C6NR02622B

Higgins, 2013, J. Mater. Chem. A, 1, 2639, 10.1039/c2ta00944g

Yang, 2016, Sci. Adv., 2, e1501122, 10.1126/sciadv.1501122

Ross, 1988, J. Electrochem. Soc., 135, 1464, 10.1149/1.2096029

Restovic, 2002, J. Electroanal. Chem., 522, 141, 10.1016/S0022-0728(02)00639-3

Liang, 2012, J. Am. Chem. Soc., 134, 3517, 10.1021/ja210924t

An, 2015, RSC Adv., 5, 75773, 10.1039/C5RA11047E

Amin, 2015, Electrochim. Acta, 151, 332, 10.1016/j.electacta.2014.11.017

Sumboja, 2015, ChemPlusChem, 80, 1341, 10.1002/cplu.201500183

Prabu, 2014, Electrochem. Commun., 41, 59, 10.1016/j.elecom.2014.01.027

Lee, 2011, Energy Environ. Sci., 4, 4148, 10.1039/c1ee01942b

Liu, 2017, Adv. Funct. Mater., 27, 1606034, 10.1002/adfm.201606034

Han, 2017, Nano Energy, 31, 541, 10.1016/j.nanoen.2016.12.008

Cai, 2016, Nanoscale, 8, 20048, 10.1039/C6NR08057J

Lee, 2015, ACS Appl. Mater. Interfaces, 7, 902, 10.1021/am507470f

Ma, 2014, RSC Adv., 4, 46084, 10.1039/C4RA07401G

Masa, 2014, Angew. Chem., Int. Ed., 53, 8508, 10.1002/anie.201402710

Li, 2017, Nano Lett., 17, 156, 10.1021/acs.nanolett.6b03691

Lee, 2016, Nano Lett., 16, 1794, 10.1021/acs.nanolett.5b04788

Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812

Liu, 2014, Appl. Catal., B, 148, 212, 10.1016/j.apcatb.2013.10.058

Qian, 2015, Adv. Energy Mater., 5, 1500245, 10.1002/aenm.201500245

Yang, 2017, ACS Appl. Mater. Interfaces, 9, 4587, 10.1021/acsami.6b13166

Cai, 2016, Electrochim. Acta, 220, 354, 10.1016/j.electacta.2016.10.070

Lee, 2016, Adv. Energy Mater., 6, 1601052, 10.1002/aenm.201601052

Yang, 2016, Small, 12, 5710, 10.1002/smll.201601887

Chen, 2017, Angew. Chem., Int. Ed. Engl., 56, 610, 10.1002/anie.201610119

Li, 2016, Nanoscale, 8, 5067, 10.1039/C5NR06538K

Yang, 2016, J. Mater. Chem. A, 4, 19037, 10.1039/C6TA08050B

Wang, 2017, ACS Appl. Mater. Interfaces, 9, 5213, 10.1021/acsami.6b12197

Mao, 2003, Electrochim. Acta, 48, 1015, 10.1016/S0013-4686(02)00815-0

Lee, 2011, Nano Lett., 11, 5362, 10.1021/nl2029078

Chen, 2012, Electrochim. Acta, 69, 295, 10.1016/j.electacta.2012.03.001

Li, 2017, Carbon, 111, 813, 10.1016/j.carbon.2016.10.057

Park, 2014, Nano Energy, 10, 192, 10.1016/j.nanoen.2014.09.009

Zhang, 2017, J. Alloys Compd., 694, 419, 10.1016/j.jallcom.2016.10.031

Lei, 2015, Nanoscale Res. Lett., 10

Jin, 2015, Electrochim. Acta, 158, 437, 10.1016/j.electacta.2015.01.151

Lee, 2011, Energy Environ. Sci., 4, 4148, 10.1039/c1ee01942b

Xu, 2016, Appl. Energy, 175, 495, 10.1016/j.apenergy.2016.04.036

Ma, 2014, RSC Adv., 4, 46084, 10.1039/C4RA07401G

Li, 2015, Int. J. Electrochem. Sci., 10, 5395, 10.1016/S1452-3981(23)17263-4

Li, 2015, J. Power Sources, 298, 102, 10.1016/j.jpowsour.2015.08.051

Liu, 2015, Angew. Chem., Int. Ed., 54, 9654, 10.1002/anie.201503612

Yang, 2017, ACS Appl. Mater. Interfaces, 9, 4587, 10.1021/acsami.6b13166

Sumboja, 2017, Nanoscale, 9, 774, 10.1039/C6NR08870H

Ding, 2016, Small, 12, 5414, 10.1002/smll.201602247

Zhang, 2015, Small, 11, 1939, 10.1002/smll.201401869

Liu, 2017, Small, 13, 1604106, 10.1002/smll.201604106

Lee, 2014, Adv. Energy Mater., 4, 211

Li, 2016, J. Power Sources, 313, 37, 10.1016/j.jpowsour.2016.02.063

Yu, 2017, Adv. Mater., 29, 1602868, 10.1002/adma.201602868

Li, 2014, Nanoscale, 6, 7534, 10.1039/C4NR02101K

Hilder, 2009, J. Power Sources, 194, 1135, 10.1016/j.jpowsour.2009.06.054

Ma, 2016, Mater. Today, 19, 265, 10.1016/j.mattod.2015.10.012

Sumboja, 2016, Funct. Mater. Lett., 9, 1630001, 10.1142/S1793604716300012

Fu, 2015, Adv. Mater., 27, 5617, 10.1002/adma.201502853

Treacy, 1996, Nature, 381, 678, 10.1038/381678a0

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Xu, 2015, Angew. Chem., Int. Ed., 54, 15390, 10.1002/anie.201508848

Park, 2015, Adv. Mater., 27, 1396, 10.1002/adma.201404639

Wu, 2012, Adv. Mater., 24, 1594, 10.1002/adma.201104356

Wu, 2012, Nanoscale, 4, 6974, 10.1039/c2nr32275g

Wang, 2010, J. Power Sources, 195, 4350, 10.1016/j.jpowsour.2009.12.137

Ji, 2015, Adv. Mater., 27, 5264, 10.1002/adma.201501115

Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563

Lu, 2016, Adv. Mater., 28, 7155, 10.1002/adma.201504652

Asadi, 2016, ACS Nano, 10, 2167, 10.1021/acsnano.5b06672

Wang, 2015, J. Power Sources, 296, 40, 10.1016/j.jpowsour.2015.07.039

Müller, 1998, J. Appl. Electrochem., 28, 895, 10.1023/A:1003464011815