S. W. D. R. Stacy and C.Davis , Transportation Energy Data Book Edition 34 , Oak Ridge National Laboratory , 2015
Rahman, 2013, J. Electrochem. Soc., 160, A1759, 10.1149/2.062310jes
Goodenough, 2010, Chem. Mater., 22, 587, 10.1021/cm901452z
Thackeray, 2012, Energy Environ. Sci., 5, 7854, 10.1039/c2ee21892e
T. B. Reddy and D.Linden , Linden's Handbook of Batteries , McGraw-Hill , New York , 4th edn, 2011
Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010
Wang, 2014, Chem. Soc. Rev., 43, 7746, 10.1039/C3CS60248F
Hu, 2016, Angew. Chem., Int. Ed., 55, 11736, 10.1002/anie.201509982
Liu, 2015, Electrocatalysis, 6, 132, 10.1007/s12678-014-0243-9
Stacy, 2017, Renewable Sustainable Energy Rev., 69, 401, 10.1016/j.rser.2016.09.135
Wu, 2015, ChemSusChem, 8, 2772, 10.1002/cssc.201500373
Zheng, 2012, Small, 8, 3550, 10.1002/smll.201200861
Cheng, 2015, Prog. Nat. Sci., 25, 545, 10.1016/j.pnsc.2015.11.008
Osgood, 2016, Nano Today, 11, 601, 10.1016/j.nantod.2016.09.001
Zhu, 2017, Small, 13, 1603793, 10.1002/smll.201603793
Jun, 2016, ChemElectroChem, 3, 511, 10.1002/celc.201500382
Bai, 2016, New J. Chem., 40, 1679, 10.1039/C5NJ02892B
Zhu, 2016, Asia-Pac. J. Chem. Eng., 11, 338, 10.1002/apj.2000
Ma, 2015, J. Power Sources, 274, 56, 10.1016/j.jpowsour.2014.10.030
Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48
Neburchilov, 2010, J. Power Sources, 195, 1271, 10.1016/j.jpowsour.2009.08.100
Zhu, 2011, Electrochim. Acta, 56, 5080, 10.1016/j.electacta.2011.03.082
Schroder, 2014, Electrochim. Acta, 117, 541, 10.1016/j.electacta.2013.11.116
Drillet, 2001, Phys. Chem. Chem. Phys., 3, 368, 10.1039/b005523i
Schroder, 2015, J. Appl. Electrochem., 45, 427, 10.1007/s10800-015-0817-0
Singh, 2015, ACS Appl. Mater. Interfaces, 7, 21138, 10.1021/acsami.5b04865
Li, 2015, Int. J. Electrochem. Sci., 10, 5395, 10.1016/S1452-3981(23)17263-4
Li, 2015, Nanoscale, 7, 1830, 10.1039/C4NR05988C
An, 2015, RSC Adv., 5, 75773, 10.1039/C5RA11047E
Du, 2013, Nanoscale, 5, 4657, 10.1039/c3nr00300k
Cao, 2003, J. Electroanal. Chem., 557, 127, 10.1016/S0022-0728(03)00355-3
Li, 2015, Chem. Commun., 51, 8841, 10.1039/C5CC01999K
Prabu, 2014, Nanoscale, 6, 3173, 10.1039/c3nr05835b
Lee, 1997, J. Electrochem. Soc., 144, 3801, 10.1149/1.1838095
Ferreira, 2004, Science, 303, 1831, 10.1126/science.1093087
Bergmann, 2013, Energy Environ. Sci., 6, 2745, 10.1039/c3ee41194j
Burke, 2015, Chem. Mater., 27, 7549, 10.1021/acs.chemmater.5b03148
Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008
Antolini, 2014, ACS Catal., 4, 1426, 10.1021/cs4011875
Hickling, 1947, Discuss. Faraday Soc., 1, 236, 10.1039/df9470100236
Trasatti, 1984, Electrochim. Acta, 29, 1503, 10.1016/0013-4686(84)85004-5
Lyons, 2010, J. Electroanal. Chem., 641, 119, 10.1016/j.jelechem.2009.11.024
Fabbri, 2014, Catal. Sci. Technol., 4, 3800, 10.1039/C4CY00669K
Forgie, 2010, Electrochem. Solid-State Lett., 13, B36, 10.1149/1.3290735
Costanzo, 2016, Phys. Chem. Chem. Phys., 18, 7490, 10.1039/C5CP06905J
Mirzakulova, 2012, Nat. Chem., 4, 794, 10.1038/nchem.1439
Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390
Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A
Jörissen, 2006, J. Power Sources, 155, 23, 10.1016/j.jpowsour.2005.07.038
Tian, 2007, Science, 316, 732, 10.1126/science.1140484
Sheng, 2016, Acc. Chem. Res., 49, 2569, 10.1021/acs.accounts.6b00485
Zhang, 2015, Science, 349, 412, 10.1126/science.aab0801
Li, 2014, Energy Environ. Sci., 7, 4061, 10.1039/C4EE01564A
Greeley, 2009, Nat. Chem., 1, 552, 10.1038/nchem.367
Stamenkovic, 2007, Science, 315, 493, 10.1126/science.1135941
Chen, 2014, Science, 343, 1339, 10.1126/science.1249061
Zhang, 2007, Science, 315, 220, 10.1126/science.1134569
Shen, 2017, Phys. Chem. Chem. Phys., 19, 12628, 10.1039/C7CP01817G
Jiang, 2014, Phys. Chem. Chem. Phys., 16, 20360, 10.1039/C4CP03151B
Norskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j
Liu, 2016, Coord. Chem. Rev., 315, 153, 10.1016/j.ccr.2016.02.002
Bezerra, 2008, Electrochim. Acta, 53, 4937, 10.1016/j.electacta.2008.02.012
Jasinski, 1964, Nature, 201, 1212, 10.1038/2011212a0
Gupta, 1987, J. Electrochem. Soc., 134, C129
Jaouen, 2007, J. Phys. Chem. C, 111, 5963, 10.1021/jp068273p
Silva, 2013, J. Am. Chem. Soc., 135, 7823, 10.1021/ja402450a
Wu, 2011, Science, 332, 443, 10.1126/science.1200832
Coutanceau, 1995, Electrochim. Acta, 40, 2739, 10.1016/0013-4686(95)00263-E
Nallathambi, 2008, J. Power Sources, 183, 34, 10.1016/j.jpowsour.2008.05.020
Bezerra, 2008, Electrochim. Acta, 53, 7703, 10.1016/j.electacta.2008.05.030
Malinauskas, 1999, Synth. Met., 107, 75, 10.1016/S0379-6779(99)00170-8
Zhang, 2013, Electrochim. Acta, 87, 599, 10.1016/j.electacta.2012.10.019
Zhao, 2005, Electrochem. Commun., 7, 1405, 10.1016/j.elecom.2005.09.032
Zhang, 2010, Int. J. Hydrogen Energy, 35, 8295, 10.1016/j.ijhydene.2009.12.015
Zhang, 2012, Int. J. Hydrogen Energy, 37, 13219, 10.1016/j.ijhydene.2012.03.049
Luo, 2011, J. Mater. Chem., 21, 8038, 10.1039/c1jm10845j
Cai, 2017, J. Mater. Chem. A, 5, 2488, 10.1039/C6TA09615H
Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j
Tseung, 1977, Electrochim. Acta, 22, 31, 10.1016/0013-4686(77)85049-4
Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008
Rossmeisl, 2005, Chem. Phys., 319, 178, 10.1016/j.chemphys.2005.05.038
Ardizzone, 1990, Electrochim. Acta, 35, 263, 10.1016/0013-4686(90)85068-X
Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608
Cheng, 2010, Chem. Mater., 22, 898, 10.1021/cm901698s
Vorkapić, 1973, J. Appl. Electrochem., 4, 271
Mao, 2002, J. Electrochem. Soc., 149, A504, 10.1149/1.1461378
Cheng, 2010, Chem. Mater., 22, 898, 10.1021/cm901698s
Lima, 2006, J. Electroanal. Chem., 590, 152, 10.1016/j.jelechem.2006.02.029
Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v
Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087
Dai, 2016, Nano Energy, 27, 185, 10.1016/j.nanoen.2016.07.007
Rios, 1998, Electrochim. Acta, 44, 1491, 10.1016/S0013-4686(98)00272-2
Shao, 2004, Nature, 431, 170, 10.1038/nature02863
Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858
Shim, 2015, J. Appl. Electrochem., 45, 1005, 10.1007/s10800-015-0868-2
Weidenkaff, 2002, Chem. Mater., 14, 1797, 10.1021/cm011305v
Lee, 2014, J. Taiwan Inst. Chem. Eng., 45, 2334, 10.1016/j.jtice.2014.05.023
Jung, 2015, Adv. Mater., 27, 266, 10.1002/adma.201403897
Matsumoto, 1977, J. Electroanal. Chem., 79, 319, 10.1016/S0022-0728(77)80453-1
Yasumichi, 1978, Bull. Chem. Soc. Jpn., 51, 1927, 10.1246/bcsj.51.1927
Goodenough, 1990, J. Am. Chem. Soc., 112, 2076, 10.1021/ja00162a006
Horowitz, 1983, J. Electrochem. Soc., 130, 1851, 10.1149/1.2120111
Oh, 2012, Nat. Chem., 4, 1004, 10.1038/nchem.1499
Park, 2017, Energy Environ. Sci., 10, 129, 10.1039/C6EE03046G
Wiggins-Camacho, 2011, J. Phys. Chem. C, 115, 20002, 10.1021/jp205336w
Zhang, 2014, Chem. Commun., 50, 6382, 10.1039/c4cc01939c
Ma, 2015, Angew. Chem., Int. Ed., 54, 4646, 10.1002/anie.201411125
Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018
Sun, 2013, Chem. Commun., 49, 10296, 10.1039/c3cc45480k
Sun, 2013, ACS Catalysis, 3, 1726, 10.1021/cs400374k
Jin, 2014, ACS Nano, 8, 3313, 10.1021/nn404927n
Choi, 2012, ACS Nano, 6, 7084, 10.1021/nn3021234
Yang, 2011, Angew. Chem., Int. Ed., 50, 7132, 10.1002/anie.201101287
Gong, 2009, Science, 323, 760, 10.1126/science.1168049
Lu, 2015, J. Am. Chem. Soc., 137, 2901, 10.1021/ja509879r
Ma, 2014, Angew. Chem., Int. Ed., 53, 7281, 10.1002/anie.201403946
Tian, 2014, ChemSusChem, 7, 2125, 10.1002/cssc.201402118
Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608
Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715
Tian, 2017, J. Mater. Chem. A, 5, 7103, 10.1039/C6TA10505J
Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390
Yang, 2011, J. Am. Chem. Soc., 133, 206, 10.1021/ja108039j
Li, 2012, Nat. Nanotechnol., 7, 394, 10.1038/nnano.2012.72
Wen, 2014, Angew. Chem., Int. Ed., 53, 6496, 10.1002/anie.201402574
Aijaz, 2016, Angew. Chem., Int. Ed., 55, 4087, 10.1002/anie.201509382
Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553
Xia, 2016, Nat. Energy, 1, 15006, 10.1038/nenergy.2015.6
Zhao, 2017, Coord. Chem. Rev., 337, 80, 10.1016/j.ccr.2017.02.010
Guo, 2016, Science, 351, 361, 10.1126/science.aad0832
Park, 2014, Phys. Chem. Chem. Phys., 16, 103, 10.1039/C3CP54311K
Ge, 2015, ACS Catalysis, 5, 4643, 10.1021/acscatal.5b00524
Sawant, 2017, Int. J. Mol. Sci., 18, 25, 10.3390/ijms18010025
Wu, 2016, Nano Energy, 29, 83, 10.1016/j.nanoen.2015.12.032
Liu, 2015, Electrocatalysis, 6, 132, 10.1007/s12678-014-0243-9
Poux, 2014, ChemPhysChem, 15, 2108, 10.1002/cphc.201402022
Zhang, 2013, Acta Chim. Sin., 71, 1101, 10.6023/A13030276
Gu, 2014, ChemCatChem, 6, 67, 10.1002/cctc.201300493
Liu, 2008, J. Am. Chem. Soc., 130, 5390, 10.1021/ja7106146
Yang, 2012, Chem. Mater., 24, 464, 10.1021/cm202554j
Su, 2013, Chem. Sci., 4, 2941, 10.1039/c3sc51052b
Chen, 2015, Adv. Mater., 27, 5010, 10.1002/adma.201502315
Wang, 2016, Nano Energy, 30, 368, 10.1016/j.nanoen.2016.10.017
Zhang, 2014, Nanoscale, 6, 6590, 10.1039/C4NR00348A
Pandiaraj, 2014, Chem. Commun., 50, 3363, 10.1039/C3CC47620K
Song, 2017, Small, 13, 1700238, 10.1002/smll.201700238
Zhu, 2016, Adv. Mater., 28, 6391, 10.1002/adma.201600979
Zhong, 2014, Angew. Chem., Int. Ed., 53, 14235, 10.1002/anie.201408990
Zhao, 2014, ACS Nano, 8, 12660, 10.1021/nn505582e
Wang, 2016, Nano Energy, 25, 110, 10.1016/j.nanoen.2016.04.042
Wang, 2014, J. Mater. Chem. A, 2, 14064, 10.1039/C4TA01506A
Strickland, 2015, Nat. Commun., 6, 7343, 10.1038/ncomms8343
Li, 2016, J. Mater. Chem. A, 4, 15836, 10.1039/C6TA06434E
Zhang, 2016, J. Mater. Chem. A, 4, 17288, 10.1039/C6TA06185K
You, 2015, ACS Catalysis, 5, 7068, 10.1021/acscatal.5b02325
Shang, 2016, Adv. Mater., 28, 1668, 10.1002/adma.201505045
Liu, 2016, J. Mater. Chem. A, 4, 11357, 10.1039/C6TA03265F
Li, 2015, Small, 11, 1443, 10.1002/smll.201402069
Dou, 2016, Chem. Commun., 52, 9727, 10.1039/C6CC05244D
Zhu, 2003, J. Appl. Electrochem., 33, 29, 10.1023/A:1022986707273
Watanabe, 1985, J. Electroanal. Chem. Interfacial Electrochem., 195, 81, 10.1016/0022-0728(85)80007-3
Maja, 2000, Electrochim. Acta, 46, 423, 10.1016/S0013-4686(00)00601-0
Watanabe, 1985, J. Electroanal. Chem., 195, 81, 10.1016/0022-0728(85)80007-3
Tomantschger, 1989, J. Power Sources, 25, 195, 10.1016/0378-7753(89)80004-7
Uchida, 1996, J. Electrochem. Soc., 143, 2245, 10.1149/1.1836988
Shinde, 2017, ACS Nano, 11, 347, 10.1021/acsnano.6b05914
Guo, 2016, J. Mater. Chem. A, 4, 6282, 10.1039/C6TA02030E
Park, 2013, J. Power Sources, 243, 267, 10.1016/j.jpowsour.2013.06.025
Gupta, 2011, J. Solid State Electrochem., 16, 1585, 10.1007/s10008-011-1559-5
Patra, 2016, Nano Energy, 30, 118, 10.1016/j.nanoen.2016.10.006
Lee, 2013, J. Electrochem. Soc., 160, F910, 10.1149/2.016309jes
Luo, 2015, Small, 11, 2817, 10.1002/smll.201403535
Cheng, 2016, J. Mater. Chem. A, 4, 18240, 10.1039/C6TA07414F
Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715
Eom, 2008, J. Electroceram., 23, 382, 10.1007/s10832-008-9472-8
Chaparro, 2014, J. Electrochem. Soc., 161, E3078, 10.1149/2.012408jes
Lee, 2016, Adv. Energy Mater., 6, 1601052, 10.1002/aenm.201601052
Tian, 2017, ACS Appl. Mater. Interfaces, 9, 7125, 10.1021/acsami.6b15235
Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715
Wei, 2014, Angew. Chem., Int. Ed., 53, 1570, 10.1002/anie.201307319
Sun, 2012, J. Mater. Chem., 22, 12810, 10.1039/c2jm31525d
Liang, 2014, Nat. Commun., 5, 4973, 10.1038/ncomms5973
Liang, 2012, Angew. Chem., Int. Ed., 51, 3892, 10.1002/anie.201107981
Liang, 2015, Nano Energy, 11, 366, 10.1016/j.nanoen.2014.11.008
Fu, 2017, Adv. Energy Mater., 7, 1601172, 10.1002/aenm.201601172
Li, 2015, Energy Environ. Sci., 8, 3274, 10.1039/C5EE02616D
Pei, 2017, Energy Environ. Sci., 10, 742, 10.1039/C6EE03265F
Pei, 2016, J. Mater. Chem. A, 4, 12205, 10.1039/C6TA03588D
Cai, 2015, J. Mater. Chem. A, 3, 22043, 10.1039/C5TA05961E
Wang, 2016, Nanoscale, 8, 11398, 10.1039/C6NR02622B
Higgins, 2013, J. Mater. Chem. A, 1, 2639, 10.1039/c2ta00944g
Yang, 2016, Sci. Adv., 2, e1501122, 10.1126/sciadv.1501122
Ross, 1988, J. Electrochem. Soc., 135, 1464, 10.1149/1.2096029
Restovic, 2002, J. Electroanal. Chem., 522, 141, 10.1016/S0022-0728(02)00639-3
Liang, 2012, J. Am. Chem. Soc., 134, 3517, 10.1021/ja210924t
An, 2015, RSC Adv., 5, 75773, 10.1039/C5RA11047E
Amin, 2015, Electrochim. Acta, 151, 332, 10.1016/j.electacta.2014.11.017
Sumboja, 2015, ChemPlusChem, 80, 1341, 10.1002/cplu.201500183
Prabu, 2014, Electrochem. Commun., 41, 59, 10.1016/j.elecom.2014.01.027
Lee, 2011, Energy Environ. Sci., 4, 4148, 10.1039/c1ee01942b
Liu, 2017, Adv. Funct. Mater., 27, 1606034, 10.1002/adfm.201606034
Han, 2017, Nano Energy, 31, 541, 10.1016/j.nanoen.2016.12.008
Cai, 2016, Nanoscale, 8, 20048, 10.1039/C6NR08057J
Lee, 2015, ACS Appl. Mater. Interfaces, 7, 902, 10.1021/am507470f
Ma, 2014, RSC Adv., 4, 46084, 10.1039/C4RA07401G
Masa, 2014, Angew. Chem., Int. Ed., 53, 8508, 10.1002/anie.201402710
Li, 2017, Nano Lett., 17, 156, 10.1021/acs.nanolett.6b03691
Lee, 2016, Nano Lett., 16, 1794, 10.1021/acs.nanolett.5b04788
Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812
Liu, 2014, Appl. Catal., B, 148, 212, 10.1016/j.apcatb.2013.10.058
Qian, 2015, Adv. Energy Mater., 5, 1500245, 10.1002/aenm.201500245
Yang, 2017, ACS Appl. Mater. Interfaces, 9, 4587, 10.1021/acsami.6b13166
Cai, 2016, Electrochim. Acta, 220, 354, 10.1016/j.electacta.2016.10.070
Lee, 2016, Adv. Energy Mater., 6, 1601052, 10.1002/aenm.201601052
Yang, 2016, Small, 12, 5710, 10.1002/smll.201601887
Chen, 2017, Angew. Chem., Int. Ed. Engl., 56, 610, 10.1002/anie.201610119
Li, 2016, Nanoscale, 8, 5067, 10.1039/C5NR06538K
Yang, 2016, J. Mater. Chem. A, 4, 19037, 10.1039/C6TA08050B
Wang, 2017, ACS Appl. Mater. Interfaces, 9, 5213, 10.1021/acsami.6b12197
Mao, 2003, Electrochim. Acta, 48, 1015, 10.1016/S0013-4686(02)00815-0
Lee, 2011, Nano Lett., 11, 5362, 10.1021/nl2029078
Chen, 2012, Electrochim. Acta, 69, 295, 10.1016/j.electacta.2012.03.001
Li, 2017, Carbon, 111, 813, 10.1016/j.carbon.2016.10.057
Park, 2014, Nano Energy, 10, 192, 10.1016/j.nanoen.2014.09.009
Zhang, 2017, J. Alloys Compd., 694, 419, 10.1016/j.jallcom.2016.10.031
Lei, 2015, Nanoscale Res. Lett., 10
Jin, 2015, Electrochim. Acta, 158, 437, 10.1016/j.electacta.2015.01.151
Lee, 2011, Energy Environ. Sci., 4, 4148, 10.1039/c1ee01942b
Xu, 2016, Appl. Energy, 175, 495, 10.1016/j.apenergy.2016.04.036
Ma, 2014, RSC Adv., 4, 46084, 10.1039/C4RA07401G
Li, 2015, Int. J. Electrochem. Sci., 10, 5395, 10.1016/S1452-3981(23)17263-4
Li, 2015, J. Power Sources, 298, 102, 10.1016/j.jpowsour.2015.08.051
Liu, 2015, Angew. Chem., Int. Ed., 54, 9654, 10.1002/anie.201503612
Yang, 2017, ACS Appl. Mater. Interfaces, 9, 4587, 10.1021/acsami.6b13166
Sumboja, 2017, Nanoscale, 9, 774, 10.1039/C6NR08870H
Ding, 2016, Small, 12, 5414, 10.1002/smll.201602247
Zhang, 2015, Small, 11, 1939, 10.1002/smll.201401869
Liu, 2017, Small, 13, 1604106, 10.1002/smll.201604106
Lee, 2014, Adv. Energy Mater., 4, 211
Li, 2016, J. Power Sources, 313, 37, 10.1016/j.jpowsour.2016.02.063
Yu, 2017, Adv. Mater., 29, 1602868, 10.1002/adma.201602868
Li, 2014, Nanoscale, 6, 7534, 10.1039/C4NR02101K
Hilder, 2009, J. Power Sources, 194, 1135, 10.1016/j.jpowsour.2009.06.054
Ma, 2016, Mater. Today, 19, 265, 10.1016/j.mattod.2015.10.012
Sumboja, 2016, Funct. Mater. Lett., 9, 1630001, 10.1142/S1793604716300012
Fu, 2015, Adv. Mater., 27, 5617, 10.1002/adma.201502853
Treacy, 1996, Nature, 381, 678, 10.1038/381678a0
Lee, 2008, Science, 321, 385, 10.1126/science.1157996
Xu, 2015, Angew. Chem., Int. Ed., 54, 15390, 10.1002/anie.201508848
Park, 2015, Adv. Mater., 27, 1396, 10.1002/adma.201404639
Wu, 2012, Adv. Mater., 24, 1594, 10.1002/adma.201104356
Wu, 2012, Nanoscale, 4, 6974, 10.1039/c2nr32275g
Wang, 2010, J. Power Sources, 195, 4350, 10.1016/j.jpowsour.2009.12.137
Ji, 2015, Adv. Mater., 27, 5264, 10.1002/adma.201501115
Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563
Lu, 2016, Adv. Mater., 28, 7155, 10.1002/adma.201504652
Asadi, 2016, ACS Nano, 10, 2167, 10.1021/acsnano.5b06672
Wang, 2015, J. Power Sources, 296, 40, 10.1016/j.jpowsour.2015.07.039
Müller, 1998, J. Appl. Electrochem., 28, 895, 10.1023/A:1003464011815