Recent Progress in Advanced Materials for Lithium Ion Batteries

Materials - Tập 6 Số 1 - Trang 156-183
Jiajun Chen1
1Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105, USA

Tóm tắt

The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

Từ khóa


Tài liệu tham khảo

Whittingham, 1976, Electrical energy storage and intercalation chemistry, Science, 192, 1126, 10.1126/science.192.4244.1126

Whittingham, 2004, Lithium batteries and cathode materials, Chem. Rev., 104, 4271, 10.1021/cr020731c

Whittingham, 2008, Materials challenges facing electrical energy storage, MRS Bull., 33, 411, 10.1557/mrs2008.82

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644

Chen, 2013, A review of nanostructured lithium ion battery materials via low temperature synthesis, Recent Pat. Nanotechnol., 7, 2, 10.2174/187221013804484872

Padhi, 1997, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144, 1188, 10.1149/1.1837571

Huang, 2001, Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid-State Lett., 4, A170, 10.1149/1.1396695

Yang, 2003, Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides, J. Power Sources, 119–121, 239, 10.1016/S0378-7753(03)00240-4

Chung, 2002, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 1, 123, 10.1038/nmat732

Delacourt, 2006, Size effects on carbon-free LiFePO4 powders: The key to superior energy density, Electrochem. Solid-State Lett., 9, A352, 10.1149/1.2201987

Gibot, 2008, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, Nat. Mater., 7, 741, 10.1038/nmat2245

Armand, M., Goodenough, J.B., Padhi, A.K., Nanjundaswamy, K.S., and Masquelier, C. (2003). Cathode Materials for Secondary (Rechargeable) Lithium Batteries. (6,514,640), U.S. Patent.

Chen, 2006, Hydrothermal synthesis of lithium iron phosphate, Electrochem. Commun., 8, 855, 10.1016/j.elecom.2006.03.021

Chen, 2008, The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications, Solid State Ionics, 178, 1676, 10.1016/j.ssi.2007.10.015

Malik, 2010, Particle size dependence of the ionic diffusivity, Nano Lett., 10, 4123, 10.1021/nl1023595

Chen, 2011, Study of antisite defects in hydrothermally prepared LiFePO4 by in situ X-ray diffraction, ACS Appl. Mater. Interfaces, 3, 1380, 10.1021/am200141a

Chen, 2011, In situ hydrothermal synthesis of LiFePO4 studied by synchrotron X-ray diffraction, J. Phys. Chem. Lett., 2, 1874, 10.1021/jz2008209

Recham, 2012, Hydrothermal synthesis, silver decoration and electrochemistry of LiMPO4 (M = Fe, Mn and Co) single crystals, Solid State Ionics, 220, 47, 10.1016/j.ssi.2012.05.031

Doeff, 2010, Combustion synthesis of nanoparticulate LiMgxMn1 − xPO4 (x = 0, 0.1, 0.2) carbon composites, J. Mater. Res., 25, 1460, 10.1557/JMR.2010.0187

Sun, 2011, Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries, Adv. Mater., 23, 5050, 10.1002/adma.201102497

Oh, 2010, High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries, Adv. Funct. Mater., 20, 3260, 10.1002/adfm.201000469

Yoo, 2011, Flexible morphology design of 3D-macroporous LiMnPO4 cathode materials for Li secondary batteries: Ball to flake, Adv. Energy Mater., 1, 347, 10.1002/aenm.201000049

Ni, 2012, A high-performance LiCoPO4/C core/shell composite for Li-ion batteries, Electrochim. Acta, 70, 349, 10.1016/j.electacta.2012.03.080

Oh, 2012, Olivine LiCoPO4-carbon composite showing high rechargeable capacity, J. Mater. Chem., 22, 14932, 10.1039/c2jm31933k

Sharabi, 2011, Significantly improved cycling performance of LiCoPO4 cathodes, Electrochem. Commun., 13, 800, 10.1016/j.elecom.2011.05.006

Dominko, 2008, Li2MSiO4 (M = Fe and/or Mn) cathode materials, J. Power Sources, 184, 462, 10.1016/j.jpowsour.2008.02.089

Abouimrane, 2005, Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material, Electrochem. Commun., 7, 156, 10.1016/j.elecom.2004.11.008

Nyten, 2006, The lithium extraction/insertion mechanism in Li2FeSiO4, J. Mater. Chem., 16, 2266, 10.1039/B601184E

Armstrong, 2011, Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries, J. Am. Chem. Soc., 133, 13031, 10.1021/ja2018543

Liivat, 2011, Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study, Solid State Ionics, 192, 58, 10.1016/j.ssi.2009.12.009

Belharouak, 2009, Structural and electrochemical characterization of Li2MnSiO4 cathode material, J. Phys. Chem. C, 113, 20733, 10.1021/jp905611s

Gong, 2008, Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid-State Lett., 11, A60, 10.1149/1.2844287

Kokalj, 2007, Beyond one-electron reaction in Li cathode materials:   Designing Li2MnxFe1 − xSiO4, Chem. Mater., 19, 3633, 10.1021/cm063011l

Aravindan, 2010, Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties, J. Mater. Chem., 20, 7340, 10.1039/c0jm01635g

Rangappa, 2012, Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-Ion battery electrode, Nano Lett., 12, 1146, 10.1021/nl202681b

Armand, 2006, On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni), Electrochem. Commun., 8, 1292, 10.1016/j.elecom.2006.06.003

Gong, 2007, Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries, J. Power Sources, 174, 524, 10.1016/j.jpowsour.2007.06.250

Lyness, C., Delobel, B., Armstrong, A.R., and Bruce, P.G. (2007). The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries. Chem. Commun., 4890–4892.

Poizot, 2000, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496, 10.1038/35035045

Poizot, 2001, Searching for new anode materials for the Li-ion technology: time to deviate from the usual path, J. Power Sources, 97–98, 235, 10.1016/S0378-7753(01)00508-0

Bruce, 2008, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505

Wu, 2012, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries, Nanoscale, 4, 2526, 10.1039/c2nr11966h

Goward, 2001, The true crystal structure of Li17M4 (M = Ge, Sn, Pb)–revised from Li22M5, J. Alloys Compd., 329, 82, 10.1016/S0925-8388(01)01567-5

Lupu, 2003, X-ray and neutron diffraction studies on “Li4.4Sn”, Inorg. Chem., 42, 3765, 10.1021/ic026235o

Yang, 2003, Anodes for lithium batteries: Tin revisited, Electrochem. Commun., 5, 587, 10.1016/S1388-2481(03)00135-8

Egashira, 2002, Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries, J. Power Sources, 107, 56, 10.1016/S0378-7753(01)00980-6

Morishita, 2006, Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery, J. Power Sources, 160, 638, 10.1016/j.jpowsour.2006.01.087

Kim, 2004, Sn/C composite anodes for Li-ion batteries, Electrochem. Solid-State Lett., 7, A44, 10.1149/1.1643792

Hassoun, 2007, High-rate, long-life Ni–Sn nanostructured electrodes for lithium-ion batteries, Adv. Mater., 19, 1632, 10.1002/adma.200602035

Luo, 2012, Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties, Adv. Mater., 24, 1405, 10.1002/adma.201104362

Fan, 2007, Characterization of amorphous and crystalline tin–cobalt anodes, Electrochem. Solid-State Lett., 10, A274, 10.1149/1.2789418

Zhang, 2010, Electrochemical behavior of the amorphous tin–cobalt anode, Electrochem. Solid-State Lett., 13, A184, 10.1149/1.3496398

Idota, 1997, Tin-based amorphous oxide: A high-capacity lithium-ion-storage material, Science, 276, 1395, 10.1126/science.276.5317.1395

Kim, 2005, Critical size of a nano SnO2 electrode for Li-secondary battery, Chem. Mater., 17, 3297, 10.1021/cm048003o

Wang, 2010, Sn/SnOx core−shell nanospheres: Synthesis, anode performance in li-ion batteries and superconductivity, J. Phys. Chem. C, 114, 14697, 10.1021/jp101852y

Lou, 2006, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 18, 2325, 10.1002/adma.200600733

Deng, 2008, Hollow core–shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage, Chem. Mater., 20, 1841, 10.1021/cm7030575

Wang, 2011, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability, J. Am. Chem. Soc., 133, 4738, 10.1021/ja2004329

Wang, 2005, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application, Chem. Mater., 17, 3899, 10.1021/cm050724f

Ye, 2010, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries, Small, 6, 296, 10.1002/smll.200901815

Park, 2007, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries, Angew. Chem. Int. Ed., 46, 750, 10.1002/anie.200603309

Park, 2008, The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials, Adv. Funct. Mater., 18, 455, 10.1002/adfm.200700407

Wu, 2011, Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties, J. Phys. Chem. C, 115, 24605, 10.1021/jp208158m

Chen, 2012, Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties, CrystEngComm, 14, 5133, 10.1039/c2ce25349f

Chen, 2007, Hydrothermal synthesis of cathode materials, J. Power Sources, 174, 442, 10.1016/j.jpowsour.2007.06.189

Lee, 2003, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries, J. Am. Chem. Soc., 125, 5652, 10.1021/ja0345524

Zhang, 2008, Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries, Adv. Mater., 20, 1160, 10.1002/adma.200701364

Lou, 2009, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater., 21, 2868, 10.1021/cm900613d

Wang, 2010, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage, ACS Nano, 4, 1587, 10.1021/nn901819n

Zhang, 2010, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries, J. Mater. Chem., 20, 5462, 10.1039/c0jm00672f

Ding, 2011, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Commun., 47, 7155, 10.1039/c1cc11968k

Wang, 2006, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers, Adv. Mater., 18, 645, 10.1002/adma.200501883

Wen, 2007, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater., 17, 2772, 10.1002/adfm.200600739

Huang, 2010, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 330, 1515, 10.1126/science.1195628

Wang, 2010, Single-crystal intermetallic M−Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2, 1548, 10.1021/am100218v

Wang, 2011, Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in li-ion batteries, J. Am. Chem. Soc., 133, 11213, 10.1021/ja202243j

Boukamp, 1981, All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc., 128, 725, 10.1149/1.2127495

Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084

Zhang, 2011, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13, 10.1016/j.jpowsour.2010.07.020

Ryu, 2004, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 7, A306, 10.1149/1.1792242

Li, 1999, A High capacity nano Si composite anode material for lithium rechargeable batteries, Electrochem. Solid-State Lett., 2, 547, 10.1149/1.1390899

Kim, 2010, A Critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed., 49, 2146, 10.1002/anie.200906287

Wang, 1998, Lithium insertion in carbon-silicon composite materials produced by mechanical milling, J. Electrochem. Soc., 145, 2751, 10.1149/1.1838709

Magasinski, 2010, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat Mater, 9, 353, 10.1038/nmat2725

Lee, 2010, Silicon nanoparticles-graphene paper composites for Li-ion battery anodes, Chem. Commun., 46, 2025, 10.1039/b919738a

Luo, 2012, Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes, J. Phys. Chem. Lett., 3, 1824, 10.1021/jz3006892

Kovalenko, 2011, A Major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334, 75, 10.1126/science.1209150

Muldoon, 2012, Electrolyte roadblocks to a magnesium rechargeable battery, Energy Environ. Sci., 5, 5941, 10.1039/c2ee03029b

Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., Oliver, A.G., Boggess, W.C., and Muldoon, J. (2011). Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun., 2.

Mohtadi, 2012, Magnesium borohydride: From hydrogen storage to magnesium battery, Angew. Chem. Int. Ed., 51, 9780, 10.1002/anie.201204913

Zhang, 2012, α-MnO2 as a cathode material for rechargeable Mg batteries, Electrochem. Commun., 23, 110, 10.1016/j.elecom.2012.07.021

Arthur, 2012, Electrodeposited Bi, Sb and Bi1 − xSbx alloys as anodes for Mg-ion batteries, Electrochem. Commun., 16, 103, 10.1016/j.elecom.2011.12.010

Singh, 2013, A high energy-density tin anode for rechargeable magnesium-ion batteries, Chem. Commun., 49, 149, 10.1039/C2CC34673G