Recent CR1 non-LTR retrotransposon activity in coscoroba reveals an insertion site preference
Tóm tắt
Chicken repeat 1 (CR1) is a taxonomically widespread non-LTR retrotransposon. Insertion site bias, or lack thereof, has not been demonstrated for CR1. Recent CR1 retrotranspositions were used to examine flanking regions for GC content and nucleotide bias at the insertion site. Elucidation of the exact octomer repeat sequence (TTCTGTGA) allowed for the identification of younger insertion events. The number of octomer repeats associated with a CR1 element increases after insertion with CR1s having one octomer being youngest. These young CR1s are flanked by regions of low GC content (38%). Furthermore, a bias for specific bases within the first four positions at the site of insertion was revealed. This study focused on those loci where the insertion event has been most recent, as this would tend to minimize noise introduced by post-integration mutational events. Our data suggest that CR1 is not inserting into regions of higher GC content within the coscoroba genome; but rather, preferentially inserting into regions of lower GC content. Furthermore, there appears to be a base preference (TTCT) for the insertion site. The results of this study increase the current level of understanding regarding the elusive CR1 non-LTR retrotransposon.
Tài liệu tham khảo
Britten RJ, Kohne DE: Repeated sequences in DNA. Science. 1968, 161: 529-540. 10.1126/science.161.3841.529.
Kazazian HH: Mobile elements: drivers of genome evolution. Science. 2004, 303: 1626-1632. 10.1126/science.1089670.
Burke WD, Malik HS, Rich SM, Eickbush TH: Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol Biol Evol. 2002, 19 (5): 619-630.
Boissinot S, Entezam A, Young L, Munson PJ, Furano AV: The insertional history of an active family of L1 retrotransposons in humans. Genome Res. 2004, 14: 1221-1231. 10.1101/gr.2326704.
Kajikawa M, Ohshima K, Okada N: Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif. Mol Biol Evol. 1997, 14: 1206-1217.
Silva R, Burch JBE: Evidence that chicken CR1 elements represent a novel family of retroposons. Mol Cell Biol. 1989, 9: 3563-3566.
International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004, 432: 695-716. 10.1038/nature03154.
Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, Morrison JA, Mardis ER, Wilson RK, Peterson DG, Paterson AH, Ivarie R: The repetitive landscape of the chicken genome. Genome Res. 2005, 15: 126-136. 10.1101/gr.2438005.
St. John J, Cotter JP, Quinn TW: A recent chicken repeat 1 (CR1) retrotransposition confirms the coscoroba-Cape Barren goose clade. Mol Phylogen Evol. 2005, 37: 83-90. 10.1016/j.ympev.2005.03.005.
St John J, Quinn TW: Rapid capture of DNA targets. BioTechniques. 2008, 44: 259-264. 10.2144/000112633.
St John J, Quinn TW: Identification of novel CR1 subfamilies in an avian order with recently active elements. Mol Phylogenet Evol. 2008, 49 (3): 1008-1014. 10.1016/j.ympev.2008.09.020.
Jurka J: Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA. 1997, 94: 1872-1877. 10.1073/pnas.94.5.1872.
Kidwell MG, Lisch DR: Transposons unbound. Nature. 1998, 393: 22-23. 10.1038/29889.
Blumenstiel JP, Hartl DJ, Lozovsky ER: Patterns of insertion and deletion in contrasting chromatin domains. Mol Biol Evol. 2002, 19: 2211-2225.
Carvalho C, Pereira HM, Ferreira J, Pina C, Mendonca D, Rosa AC, Carmo-Fonseca M: Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell. 2001, 12: 3563-3572.
Flint J, Tufarelli C, Peden J, Clark K, Daniels RJ, Hardison R, Miller W, Philipsen S, Tan-Un KC, McMorrow T, Frampton J, Alter BP, Frischauf A-M, Higgs DR: Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the α globin cluster. Hum Mol Genet. 2001, 10: 371-382. 10.1093/hmg/10.4.371.
Olofsson B, Bernardi G: The distribution of CR1, and Alu-like family of interspersed repeats, in the chicken genome. Biochim Biophys Acta. 1983, 740: 339-341.
Coullin P, Bed'Hom B, Candelier JJ, Vettese D, Maucolin S, Moulin S, Galkina SA, Bernheim A, Volobouev V: Cytogenetic repartition of chicken CR1 sequences evidenced by PRINS in Galliformes and some other birds. Chromosome Res. 2005, 13: 665-673. 10.1007/s10577-005-1004-7.
Ovchinnikov I, Rubin A, Swergold GD: Tracing the LINEs of human evolution. Proc Natl Acad Sci USA. 2002, 99: 10522-10527. 10.1073/pnas.152346799.