Recent Advances on the Generation, Stabilization, and Potential Applications of Double Emulsions Based on the Microfluidic Strategy

Food Engineering Reviews - Tập 16 Số 1 - Trang 129-145 - 2024
Xiaofan Wei1, Xiaolin Yao1, Juan Ye1, Guoliang Li1, Ning Liu1, Dan Li1, Dan Yang1, Yapeng Fang2, Katsuyoshi Nishinari3, Ming Zhao4
1School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, Shaanxi, China
2Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
3School of Bioengineering and Food Science, Glyn O. Phillips Hydrocolloid Research Centre, Hubei University of Technology, Wuhan, 430068, China
4School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Farley S, Ramsay K, Elvira KS (2021) A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries. Lab Chip 21(14):2781–2790. https://doi.org/10.1039/d1lc00126d

Tenorio-Garcia E, Araiza-Calahorra A, Simone E, Sarkar A (2022) Recent advances in design and stability of double emulsions: trends in Pickering stabilization. Food Hydrocoll 128. https://doi.org/10.1016/j.foodhyd.2022.107601

Zhi Z, Liu R, Wang W, Dewettinck K, Van Bockstaele F (2022) Recent progress in oil-in-water-in-oil (O/W/O) double emulsions. Crit Rev Food Sci Nutr 1–12. https://doi.org/10.1080/10408398.2022.2029346

Ilyasoglu Buyukkestelli H, El SN (2021) Enhancing sweetness using double emulsion technology to reduce sugar content in food formulations. Innov Food Sci Emerg Technol 74. https://doi.org/10.1016/j.ifset.2021.102809

Fernández-Martín F, Freire M, Bou R, Cofrades S, Jiménez-Colmenero F (2017) Olive oil based edible W/O/W emulsions stability as affected by addition of some acylglycerides. J Food Eng 196:18–26. https://doi.org/10.1016/j.jfoodeng.2016.10.011

Aditya NP, Aditya S, Yang H, Kim HW, Park SO, Ko S (2015) Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem 173:7–13. https://doi.org/10.1016/j.foodchem.2014.09.131

Bodin-Thomazo N, Malloggi F, Pantoustier N, Perrin P, Guenoun P, Rosilio V (2022) Formation and stabilization of multiple w/o/w emulsions encapsulating catechin, by mechanical and microfluidic methods using a single pH-sensitive copolymer: effect of copolymer/drug interaction. Int J Pharm 622:121871. https://doi.org/10.1016/j.ijpharm.2022.121871

Eisinaite V, Juraite D, Schroën K, Leskauskaite D (2017) Food-grade double emulsions as effective fat replacers in meat systems. J Food Eng 213:54–59. https://doi.org/10.1016/j.jfoodeng.2017.05.022

Cetinkaya T, Altay F, Ceylan Z (2021) A new application with characterized oil-in-water-in-oil double emulsions: gelatin-xanthan gum complexes for the edible oil industry. Lwt 138. https://doi.org/10.1016/j.lwt.2020.110773

Liu H, Piper JA, Li M (2021) Rapid, simple, and inexpensive spatial patterning of wettability in microfluidic devices for double emulsion generation. Anal Chem 93(31):10955–10965. https://doi.org/10.1021/acs.analchem.1c01861

Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189. https://doi.org/10.1038/nature13118

Doufene K, Tourne-Peteilh C, Etienne P, Aubert-Pouessel A (2019) Microfluidic systems for droplet generation in aqueous continuous phases: a focus review. Langmuir 35(39):12597–12612. https://doi.org/10.1021/acs.langmuir.9b02179

Fathordoobady F, Sannikova N, Guo Y, Singh A, Kitts DD, Pratap-Singh A (2021) Comparing microfluidics and ultrasonication as formulation methods for developing hempseed oil nanoemulsions for oral delivery applications. Sci Rep 11(1). https://doi.org/10.1038/s41598-020-79161-w

Silva BFB, CR-A, Neus Vilanova, (2016) Recent advances in multiple emulsions and their application as templates. Curr Opin Colloid Interface Sci 308(5721):98–108. https://doi.org/10.1126/science.1109164

Ying X, Gao J, Lu J, Ma C, Lv J, Adhikari B, Wang B (2021) Preparation and drying of water-in-oil-in-water (W/O/W) double emulsion to encapsulate soy peptides. Food Res Int 141:110148. https://doi.org/10.1016/j.foodres.2021.110148

Ježková M, Jelínek P, Marelja O, Trunov D, Jarošová M, Slouka Z, Šoóš M (2022) The preparation of mono- and multicomponent nanoparticle aggregates with layer-by-layer structure using emulsion templating method in microfluidics. Chem Eng Sci 247. https://doi.org/10.1016/j.ces.2021.117084

Logesh D, Vallikkadan MS, Leena MM, Moses JA, Anandharamakrishnan C (2021) Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends Food Sci Technol 116:501–524. https://doi.org/10.1016/j.tifs.2021.07.011

Ho TM, Razzaghi A, Ramachandran A, Mikkonen KS (2022) Emulsion characterization via microfluidic devices: a review on interfacial tension and stability to coalescence. Adv Colloid Interface Sci 299:102541. https://doi.org/10.1016/j.cis.2021.102541

Feng Y, Lee Y (2019) Microfluidic assembly of food-grade delivery systems: toward functional delivery structure design. Trends Food Sci Technol 86:465–478. https://doi.org/10.1016/j.tifs.2019.02.054

Wang A, Feng X, He G, Xiao Y, Zhong T, Yu X (2023) Recent advances in digital microfluidic chips for food safety analysis: preparation, mechanism and application. Trends Food Sci Technol 134:136–148. https://doi.org/10.1016/j.tifs.2023.03.009

Zhang J, Zhu J, Cheng Y, Huang Q (2023) Recent advances in pickering double emulsions and potential applications in functional foods: a perspective paper. Foods 12(5). https://doi.org/10.3390/foods12050992

Øye G, Simon S, Rustad T, Paso K (2023) Trends in food emulsion technology: pickering, nano-, and double emulsions. Current Opinion in Food Science 50. https://doi.org/10.1016/j.cofs.2023.101003

Wang Q, Hu C, Zoghbi A, Huang J, Xia Q (2017) Oil-in-oil-in-water pre-double emulsions stabilized by nonionic surfactants and silica particles: a new approach for topical application of rutin. Colloids Surf, A 522:399–407. https://doi.org/10.1016/j.colsurfa.2017.02.067

Kumar A, Kaur R, Kumar V, Kumar S, Gehlot R, Aggarwal P (2022) New insights into water-in-oil-in-water (W/O/W) double emulsions: properties, fabrication, instability mechanism, and food applications. Trends Food Sci Technol 128:22–37. https://doi.org/10.1016/j.tifs.2022.07.016

Hinderink EBA, de Ruiter J, de Leeuw J, Schroën K, Sagis LMC, Berton-Carabin CC (2021) Early film formation in protein-stabilised emulsions: insights from a microfluidic approach. Food Hydrocoll 118. https://doi.org/10.1016/j.foodhyd.2021.106785

Lee TY, Choi TM, Shim TS, Frijns RA, Kim SH (2016) Microfluidic production of multiple emulsions and functional microcapsules. Lab Chip 16(18):3415–3440. https://doi.org/10.1039/c6lc00809g

Vladisavljević G, Al Nuumani R, Nabavi S (2017) Microfluidic production of multiple emulsions. Micromachines 8 (3). https://doi.org/10.3390/mi8030075

Martino C, deMello AJ (2016) Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus 6(4):20160011. https://doi.org/10.1098/rsfs.2016.0011

Oliveira AF, Bastos RG, de la Torre LG (2022) Double T-junction microfluidic and conventional dripping systems for Bacillus subtilis immobilization in calcium alginate microparticles for lipase production. Enzyme Microb Technol 154:109976. https://doi.org/10.1016/j.enzmictec.2021.109976

Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH (2022) Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. Lab Chip 22(12):2259–2291. https://doi.org/10.1039/d2lc00196a

Chong D, Liu X, Ma H, Huang G, Han YL, Cui X, Yan J, Xu F (2015) Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 19(5):1071–1090. https://doi.org/10.1007/s10404-015-1635-8

Sattari A, Hanafizadeh P, Keshtiban MM (2021) Microfluidic preparation of double emulsions using a high aspect ratio double co-flow device. Colloids Surf A Physicochem Eng Asp 628. https://doi.org/10.1016/j.colsurfa.2021.127297

Seo M, Paquet C, Nie Z, Xu S, Kumacheva E (2007) Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3(8). https://doi.org/10.1039/b700687j

Kong L, Levin A, Toprakcioglu Z, Xu Y, Gang H, Ye R, Mu BZ, Knowles TPJ (2020) Lipid-stabilized double emulsions generated in planar microfluidic devices. Langmuir 36(9):2349–2356. https://doi.org/10.1021/acs.langmuir.9b03622

Ma T, Wang Y, Sun S, Pan T, Li B, Chu J (2022) Size-tunable droplet microfluidic system using an on-chip microfluidic peristaltic pump. Sens Actuators A Phys 334. https://doi.org/10.1016/j.sna.2021.113332

Baroud CN, FGaRD, (2010) Dynamics of microfluidic droplets. Lab Chip 10:2032–2045. https://doi.org/10.1039/c001191f

Tian Y, Lipke EA (2020) microfluidic production of cell-laden microspheroidal hydrogels with different geometric shapes. ACS Biomater Sci Eng 6(11):6435–6444. https://doi.org/10.1021/acsbiomaterials.0c00980

Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6(3):437–446. https://doi.org/10.1039/b510841a

Peng H, Xu Z, Chen S, Zhang Z, Li B, Ge L (2015) An easily assembled double T-shape microfluidic devices for the preparation of submillimeter-sized polyacronitrile (PAN) microbubbles and polystyrene (PS) double emulsions. Colloids Surf, A 468:271–279. https://doi.org/10.1016/j.colsurfa.2014.12.016

Wang J, Cheng Y, Yu Y, Fu F, Chen Z, Zhao Y, Gu Z (2015) Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl Mater Interfaces 7(49):27035–27039. https://doi.org/10.1021/acsami.5b10442

Perro A, Nicolet C, Angly J, Lecommandoux S, Le Meins JF, Colin A (2011) Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes. Langmuir 27(14):9034–9042. https://doi.org/10.1021/la1037102

Zhao Y, Xie Z, Gu H, Jin L, Zhao X, Wang B, Gu Z (2012) Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Materials 4(9):e25–e25. https://doi.org/10.1038/am.2012.46

Mou CL, Wang W, Li ZL, Ju XJ, Xie R, Deng NN, Wei J, Liu Z, Chu LY (2018) Trojan-horse-like stimuli-responsive microcapsules Adv Sci (Weinh) 5(6):1700960. https://doi.org/10.1002/advs.201700960

Windbergs M, Zhao Y, Heyman J, Weitz DA (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135(21):7933–7937. https://doi.org/10.1021/ja401422r

do Nascimento DF, Arriaga LR, Eggersdorfer M, Ziblat R, Marques Mde F, Reynaud F, Koehler SA, Weitz DA, (2016) Microfluidic fabrication of pluronic vesicles with controlled permeability. Langmuir 32(21):5350–5355. https://doi.org/10.1021/acs.langmuir.6b01399

Sun W, Zhang X, Yao C, Wang Q, Jin N, Lv H, Zhao Y (2021) Hydrodynamic characterization of continuous flow of Pickering droplets with solid nanoparticles in microchannel reactors. Chem Eng Sci 245. https://doi.org/10.1016/j.ces.2021.116838

Torbensen K, Baroud CN, Ristori S, Abou-Hassan A (2021) Tip streaming of a lipid-stabilized double emulsion generated in a microfluidic channel. Langmuir 37(24):7442–7448. https://doi.org/10.1021/acs.langmuir.1c00827

Yousofvand R, Ghasemi K (2022) A novel microfluidic device for double emulsion formation: the effects of design parameters on droplet production performance. Colloids Surf A Physicochem Eng Asp 635. https://doi.org/10.1016/j.colsurfa.2021.128059

Santos TP, Michelon M, Carvalho MS, Cunha RL (2021) Formation and stability of oil-in-water emulsions based on components of bioprocesses: a microfluidic analysis. Colloids Surf A Physicochem Eng Asp 626. https://doi.org/10.1016/j.colsurfa.2021.126994

Liu EY, Choi Y, Yi H, Choi CH (2021) Triple emulsion-based rapid microfluidic production of core-shell hydrogel microspheres for programmable biomolecular conjugation. ACS Appl Mater Interfaces 13(10):11579–11587. https://doi.org/10.1021/acsami.0c20081

Liu Z, Yu DU, Yan P (2018) Generation of water-in-oil-in-water (W/O/W) double emulsions by microfluidics. Chin J Anal Chem 46(3):324–330. https://doi.org/10.1016/s1872-2040(17)61072-7

Min NG, Ku M, Yang J, Kim S-H (2016) Microfluidic production of uniform microcarriers with multicompartments through phase separation in emulsion drops. Chem Mater 28(5):1430–1438. https://doi.org/10.1021/acs.chemmater.5b04798

Leister N, Vladisavljevic GT, Karbstein HP (2022) Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. J Colloid Interface Sci 611:451–461. https://doi.org/10.1016/j.jcis.2021.12.094

Nabavi SA, Vladisavljević GT, Manović V (2017) Mechanisms and control of single-step microfluidic generation of multi-core double emulsion droplets. Chem Eng J 322:140–148. https://doi.org/10.1016/j.cej.2017.04.008

Li Y, Yan D, Fu F, Liu Y, Zhang B, Wang J, Shang L, Gu Z, Zhao Y (2017) Composite core-shell microparticles from microfluidics for synergistic drug delivery. Sci China Mater 60(6):543–553. https://doi.org/10.1007/s40843-016-5151-6

Sun BJ, Shum HC, Holtze C, Weitz DA (2010) Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl Mater Interfaces 2(12):3411–3416. https://doi.org/10.1021/am100860b

Adams LLA, Kodger TE, Kim S-H, Shum HC, Franke T, Weitz DA (2012) Single step emulsification for the generation of multi-component double emulsions. Soft Matter 8(41). https://doi.org/10.1039/c2sm25953b

Gebhard F, Hartmann J, Hardt S (2021) Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields. Soft Matter 17(14):3929–3936. https://doi.org/10.1039/d0sm01921f

Choi D, Lee E, Kim SJ, Han M (2019) Passive droplet generation in aqueous two-phase systems with a variable-width microchannel. Soft Matter 15(23):4647–4655. https://doi.org/10.1039/c9sm00469f

Chao Y, Shum HC (2020) Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 49(1):114–142. https://doi.org/10.1039/c9cs00466a

Mak SY, Chao Y, Rahman S, Shum HC (2018) Droplet formation by rupture of vibration-induced interfacial fingers. Langmuir 34(3):926–932. https://doi.org/10.1021/acs.langmuir.7b02633

Zhou C, Zhu P, Tian Y, Tang X, Shi R, Wang L (2017) Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers. Lab Chip 17(19):3310–3317. https://doi.org/10.1039/c7lc00696a

Song Y, Shum HC (2012) Monodisperse w/w/w double emulsion induced by phase separation. Langmuir 28(33):12054–12059. https://doi.org/10.1021/la3026599

Martynov S, Wang X, Stride EP, Edirisinghe MJ (2010) Preparation of a micro-porous alginate gel using a microfluidic bubbling device. Int J Food Eng 6(3). https://doi.org/10.2202/1556-3758.1774

Xu J, Salari A, Wang Y, He X, Kerr L, Darbandi A, de Leon AC, Exner AA, Kolios MC, Yuen D, Tsai SSH (2021) Microfluidic generation of monodisperse nanobubbles by selective Gas dissolution. Small 17(20):e2100345. https://doi.org/10.1002/smll.202100345

Wang W-T, Chen R, Xu J-H, Wang Y-D, Luo G-S (2015) One-step microfluidic production of gas-in-water-in-oil multi-cores double emulsions. Chem Eng J 263:412–418. https://doi.org/10.1016/j.cej.2014.11.030

Zhang S-B, Ge X-H, Geng Y-H, Luo G-S, Chen J, Xu J-H (2017) From core-shell to Janus: microfluidic preparation and morphology transition of Gas/Oil/Water emulsions. Chem Eng Sci 172:100–106. https://doi.org/10.1016/j.ces.2017.06.031

Deshpande S, Caspi Y, Meijering AE, Dekker C (2016) Octanol-assisted liposome assembly on chip. Nat Commun 7:10447. https://doi.org/10.1038/ncomms10447

Michelon M, Huang Y, de la Torre LG, Weitz DA, Cunha RL (2019) Single-step microfluidic production of W/O/W double emulsions as templates for β-carotene-loaded giant liposomes formation. Chem Eng J 366:27–32. https://doi.org/10.1016/j.cej.2019.02.021

Deng NN, Yelleswarapu M, Zheng L, Huck WT (2017) Microfluidic assembly of monodisperse vesosomes as artificial cell models. J Am Chem Soc 139(2):587–590. https://doi.org/10.1021/jacs.6b10977

Guo S, Yao T, Ji X, Zeng C, Wang C, Zhang L (2014) Versatile preparation of nonspherical multiple hydrogel core PAM/PEG emulsions and hierarchical hydrogel microarchitectures. Angew Chem Int Ed Engl 53(29):7504–7509. https://doi.org/10.1002/anie.201403256

Du XY, Li Q, Wu G, Chen S (2019) Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 31(52):e1903733. https://doi.org/10.1002/adma.201903733

Li L, Yan Z, Jin M, You X, Xie S, Liu Z, Berg. Avd, Eijkel. JCT, Shui. L, (2019) In-channel responsive surface wettability for reversible and multiform emulsion droplet preparation and application. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b03160

Werner JG, Nawar S, Solovev AA, Weitz DA (2018) Hydrogel microcapsules with dynamic pH-responsive properties from methacrylic anhydride. Macromolecules 51(15):5798–5805. https://doi.org/10.1021/acs.macromol.8b00843

Mytnyk S, Ziemecka I, Olive AGL, van der Meer JWM, Totlani KA, Oldenhof S, Kreutzer MT, van Steijn V, van Esch JH (2017) Microcapsules with a permeable hydrogel shell and an aqueous core continuously produced in a 3D microdevice by all-aqueous microfluidics. RSC Adv 7(19):11331–11337. https://doi.org/10.1039/c7ra00452d

Liu L, Wu F, Ju XJ, Xie R, Wang W, Niu CH, Chu LY (2013) Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J Colloid Interface Sci 404:85–90. https://doi.org/10.1016/j.jcis.2013.04.044

Damiati S (2020) In situ microfluidic preparation and solidification of alginate microgels. Macromol Res 28(11):1046–1053. https://doi.org/10.1007/s13233-020-8142-9

Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA (2015) Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell Culture. Adv Healthc Mater 4(11):1628–1633. https://doi.org/10.1002/adhm.201500021

Marquis M, Alix V, Capron I, Cuenot S, Zykwinska A (2016) Microfluidic encapsulation of pickering oil microdroplets into alginate microgels for lipophilic compound delivery. ACS Biomater Sci Eng 2(4):535–543. https://doi.org/10.1021/acsbiomaterials.5b00522

Huang F, Zhu Z, Niu Y, Zhao Y, Si T, Xu RX (2020) Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release. Lab Chip 20(7):1249–1258. https://doi.org/10.1039/d0lc00111b

Pessi J, Santos HA, Miroshnyk I, DA JoukoYliruusi W, Mirza S (2014) Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int J Pharm 472(1–2):82–87. https://doi.org/10.1016/j.ijpharm.2014.06.012

Kong F, Zhang X, Hai M (2014) Microfluidics fabrication of monodisperse biocompatible phospholipid vesicles for encapsulation and delivery of hydrophilic drug or active compound. Langmuir 30(13):3905–3912. https://doi.org/10.1021/la404201m

Mudrić J, Šavikin K, Ibrić S, Đuriš J (2019) Double emulsions (W/O/W emulsions): encapsulation of plant bioactives. Lekovite sirovine 39:76–83. https://doi.org/10.5937/leksir1939076M

Al Nuumani R, Vladisavljević GT, Kasprzak M, Wolf B (2020) In-vitro oral digestion of microfluidically produced monodispersed W/O/W food emulsions loaded with concentrated sucrose solution designed to enhance sweetness perception. J Food Eng 267. https://doi.org/10.1016/j.jfoodeng.2019.109701