Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry
Tóm tắt
During the past decade, hyperspectral imaging (HSI) has been rapidly developing and widely applied in the food industry by virtue of the use of chemometric techniques in which wavelength selection methods play an important role. This paper is a review of such variable selection methods and their limitations, describing the basic taxonomy of the methods and their respective advantages and disadvantages. Special attention is paid to recent developments in wavelength selection techniques for HSI in the field of food quality and safety evaluations. Typical and commonly used methods in HSI, such as partial least squares regression, stepwise regression and spectrum analysis, are described in detail. Some sophisticated methods, such as successive projections algorithm, uninformative variable elimination, simulated annealing, artificial neural network and genetic algorithm methods, are also discussed. Finally, new methods not currently used but that could have substantial impact on the field are presented. In short, this review provides an overview of wavelength selection methods in food-related areas and offers a thoughtful perspective on future potentials and challenges in the development of HSI systems.
Tài liệu tham khảo
Ariana, D. P., & Lu, R. (2010). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74(1), 137–144.
Balabin, R. M., & Smirnov, S. V. (2011). Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Analytica Chimica Acta, 692(1–2), 63–72.
Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012a). Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Analytica Chimica Acta, 719, 30–42.
Barbin, D. F., ElMasry, G., Sun, D.-W., Allen, P., & Noha, M. (2012b). Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innovative Food Science & Emerging Technologies, 17, 180–191.
Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012c). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Science, 90(1), 259–268.
Barbin, D. F., ElMasry, G., Sun, D.-W., & Allen, P. (2013a). Non-destructive determination of chemical composition in intact and minced pork by near-infrared hyperspectral imaging. Food Chemistry, 138(2–3), 1162–1171.
Barbin, D. F., Sun, D.-W., & Su, C. (2013b). NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innovative Food Science & Emerging Technologies, 18, 226–236.
Ben-Bassat, M. (1982). Pattern recognition and reduction of dimensionality. In: Krishnaiah P. and Kanal L. (eds.) Handbook of statistics II, Vol. 1. North-Holland, Amsterdam. pp. 773–791.
Bhuvaneswari, K., Fields, P. G., White, N. D. G., Sarkar, A. K., Singh, C. B., & Jayas, D. S. (2011). Image analysis for detecting insect fragments in semolina. Journal of Stored Products Research, 47, 20–24.
Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108, 13–22.
Cai, W., Li, Y., & Shao, X. (2008). A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 90, 188–194.
Centner, V., Massart, D. L., & De Noord, O. E. (1996). Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 68(21), 3851–3858.
Centner, V. (2009). Multivariate approaches: UVE-PLS. Chemistry and Biochemistry Data Analysis, 21, 609–618.
Chang, Y.-L. (2011). A simulated annealing feature extraction approach for hyperspectral images. Future Generation Computer Systems, 27(4), 419–426.
Chao, K., Yang, C., Kim, M., & Chan, D. (2008). High throughput spectral imaging system for wholesomeness inspection of chicken. Applied Engineering in Agriculture, 24(4), 475–485.
Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112.
Cluff, K., Naganathan, G. K., Subbiah, J., Lu, R., Calkins, C. R., & Samal, A. (2008). Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sensing and Instrumentation for Food Quality and Safety, 2(3), 189–196.
Costa, C., D’Andrea, S., Russo, R., Antonucci, F., Pallottino, F., & Menesatti, P. (2011). Application of non-invasive techniques to differentiate sea bass (Dicentrarchus labrax, L. 1758) quality cultured under different conditions. Aquaculture International, 19(4), 765–778.
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1, 131–156.
Du, C.-J., & Sun, D.-W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology, 15, 230–249.
Du, C.-J., & Sun, D.-W. (2005a). Comparison of three methods for classification of pizza topping using different colour space transformations. Journal of Food Engineering, 68(3), 277–287. doi:10.1016/j.jfoodeng.2004.05.044.
Du, C.-J., & Sun, D.-W. (2005b). Pizza sauce spread classification using colour vision and support vector machines. Journal of Food Engineering, 66(2), 137–145. doi:10.1016/j.jfoodeng.2004.03.011.
Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.
ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT--Food Science and Technology, 41(2), 337–345.
ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52(1), 1–8.
ElMasry, G., Sun, D.-W., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International, 44(9), 2624–2633.
ElMasry, G., Sun, D.-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127–140.
ElMasry, G., Sun, D.-W., & Allen, P. (2013). Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. Journal of Food Engineering, 117(2), 235–246.
Esbensen, K. H. (2002). Multivariate data analysis in practice (5th ed.). Oslo: CAMO Process.
Fang, H., Zou, Q., He, Y., & Li, X. L. (2012). Detection of activity of POD in tomato leaves based on hyperspectral imaging technology. Spectroscopy and Spectral Analysis, 32(8), 2228–2233.
Fang, J.P., Chang, Y.L., Ren, H., Lin, C.C., Liang, W.Y., & Fang, J.F. (2006). A simulated annealing band selection approach for hyperspectral imagery. Proceedings of SPIE 6378, doi:10.1117/12.685683.
Feng, Y.-Z., ElMasry, G., Sun, D.-W., Scannell, A. G. M., Walsh, D., & Morcy, N. (2013). Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chemistry, 138(2–3), 1829–1836.
Feng, Y.-Z., & Sun, D.-W. (2013a). Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta, 105, 244–249.
Feng, Y.-Z., & Sun, D.-W. (2013b). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta, 109, 74–83.
Galvão, R. K. H., Araújo, M. C. U., Fragoso, W. D., Silva, E. C., José, G. E., Soares, S. F. C., et al. (2008). A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemometrics and Intelligent Laboratory Systems, 92(1), 83–91.
Geladi, P., & Dabakk, E. (1995). An overview of chemometrics applications in near infrared spectrometry. Journal of Near Infrared Spectroscopy, 3(1), 119–132.
Ghosh, P. K., & Jayas, D. S. (2009). Use of spectroscopic data for automation in food processing Industry. Sensing and Instrumentation for Food Quality and Safety, 3, 3–11.
Glorfeld, L. W. (1996). A methodology for simplification and interpretation of back propagation-based neural network models. Expert Systems with Applications, 10(1), 37–54.
Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.
Gomez-Sanchis, J., Martin-Guerrero, J. D., Soria-Olivas, E., Martinez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques. Expert Systems with Applications, 39, 780–785.
Gomez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., Martinez-Martinez, J. M., et al. (2013). Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest Biology and Technology, 82, 76–86.
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.
Hall, M. (1999). Correlation-based feature selection for machine learning. PhD Thesis., Department of Computer Science, Waikato University, New Zealand.
Iqbal, A., Sun, D.-W., & Allen, P. (2013). Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. Journal of Food Engineering, 117(1), 42–51.
Jain, A. K., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153–158.
Jackman, P., Sun, D.-W., Du, C.-J., Allen, P., Downey, G. (2008). Prediction of beef eating quality from colour, marbling and wavelet texture features. Meat Science, 80(4), 1273–1281. doi:10.1016/j.meatsci.2008.06.001.
Jackman, P., Sun, D.-W., Du, C.-J., Allen, P. (2009). Prediction of beef eating qualities from colour, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognition, 42(5), 751–763. doi:10.1016/j.patcog.2008.09.009.
Jiang, Y.L., Zhang, R.Y., Yu, J., Hu, W.C., & Yin, Z.T. (2011). Detection of infected Tephritidae citrus fruit based on hyperspectral imaging and two-band ratio algorithm. Advanced Materials Research, 311–313, 1501–1504.
Jouan-Rimbaud, D., Massart, D. L., Leardi, R., & De Noord, O. E. (1995). Genetic algorithms as a tool for wavelength selection in multivariate calibration. Analytical Chemistry, 67(23), 4295–4301.
Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012a). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovative Food Science & Emerging Technologies, 16, 218–226.
Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012b). Prediction of some quality attributes of lamb meat using near infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta, 714, 57–67.
Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012c). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316–325.
Kamruzzaman, M., Sun, D.-W., ElMasry, G., & Allen, P. (2013a). Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130–136.
Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2013b). Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chemistry, 141(1), 389–396.
Kirjpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–690.
Ladha, L., & Deepa, T. (2011). Feature selection methods and algorithms. International Journal of Computational Engineering Science, 3(5), 1787–1797.
Lavine, B. K., Ritter, J., Moores, A. J., Wilson, M., Faruque, A., & Mayfield, H. T. (2000). Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms. Analytical Chemistry, 72(2), 423–431.
Lavine, B. K., Davidson, C. E., & Moores, A. J. (2002). Genetic algorithms for spectral pattern recognition. Vibrational Spectroscopy, 28(1), 83–95.
Lavine, B. K. (2006). Pattern recognition. Critical Reviews in Analytical Chemistry, 36(3–4), 153–161.
Li, J. B., Rao, X. Q., Guo, J. X., & Ying, Y. B. (2010). Hyperspectral reflectance imaging for detecting citrus canker based on dual-band ratio image classification method. 5th international symposium on advanced optical manufacturing and testing technologies. Proceedings of SPIE. doi:10.1117/12.867065.
Liu, D., Zeng, X.-A., & Sun, D.-W. (2013). Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: a review. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2013.777020.
Liu, F., He, Y., Wang, L., & Sun, G. M. (2011). Detection of organic acids and pH of fruit vinegars using near-infrared spectroscopy and multivariate calibration. Food and Bioprocess Technology, 4(8), 1331–1340.
Luo, X., Takahashi, T., Kyo, K., & Zhang, S. (2012). Wavelength selection in vis/NIR spectra for detection of bruises on apples by ROC analysis. Journal of Food Engineering, 109(3), 457–466.
Martens, H., & Naes, T. (1993). Multivariate Calibration. London: Wiley.
Mendoza, F., Lu, R., Arianab, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.
Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyperspectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2(3), 308–314.
Menesatti, P., Antonucci, F., Pallottino, F., Giorgi, S., Matere, A., Nocente, F., et al. (2013a). Laboratory vs. in-field spectral proximal sensing for early detection of Fusarium head blight infection in durum wheat. Biosystems Engineering, 114(3), 289–293.
Menesatti, P., Antonucci, F., Pallottino, F., Bucarelli, F. M., & Costa, C. (2013b). Spectrophotometric qualification of Italian pasta produced by traditional or industrial production parameters. Food and Bioprocess Technology. doi:10.1007/s11947-013-1138-0.
Menesatti, P., Costa, C., & Aguzzi, J. (2010). Quality evaluation of fish by hyperspectral imaging. In D.-W. Sun (Ed.), Hyperspectral imaging for food quality: analysis and control (pp. 273–294). London: Academic.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2001). Introduction to linear regression analysis (3rd ed.) (pp. 131–154). New York: Wiley.
Nakariyakul, S., & Casasent, D. P. (2009). Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data. Journal of Food Engineering, 94(3–4), 358–365.
Nakariyakul, S., & Casasent, D. P. (2011). Classification of internally damaged almond nuts using hyperspectral imagery. Journal of Food Engineering, 103(1), 62–67.
Papetti, P., Costa, C., Antonucci, F., Figorilli, S., Solaini, S., & Menesatti, P. (2012). A RFID web-based infotracing system for the artisanal Italian cheese quality traceability. Food Control, 27(1), 234–241.
Park, B., Yoon, S.-C., Windham, W., Lawrence, K., Kim, M., & Chao, K. (2011). Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sensing and Instrumentation for Food Quality and Safety, 5, 25–32.
Peng, Y., & Wu, J. (2008). Hyperspectral scattering profiles for prediction of beef tenderness. ASABE, Providence, Rhode Island, June 29–July 2.
Peng, Y., Zhang, J., Wang, W., Li, Y., Wu, J., Huang, H., et al. (2011). Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. Journal of Food Engineering, 102(2), 163–169.
Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113, S110–S122.
Ponsa, D., & Lopez, A. (2007). Feature selection based on a new formulation of the minimal redundancy-maximal-relevance criterion. Lecture notes in computer science. Pattern Recognition and Image Analysis, 4477, 47–54.
Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.
Rinnan, A., Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201–1222.
Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.
Serranti, S., Cesare, D., Marini, F., & Bonifazi, G. (2013). Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta, 103, 276–284.
Shao, X. G., Wang, F., Chen, D., & Su, Q. D. (2004). A method for near-infrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables. Analytical and Bioanalytical Chemistry, 378(5), 1382–1387.
Siedelecky, W., & Sklansky, J. (1998). On automatic feature selection. International Journal of Pattern Recognition and Artificial Intelligence, 2, 197–220.
Siripatrawan, U., Makino, Y., Kawagoe, Y., & Oshita, S. (2011). Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta, 85, 276–281.
Sivertsen, A. H., Kimiya, T., & Heia, K. (2011). Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy. Journal of Food Engineering, 103(3), 317–323.
Sone, I., Olsen, R. L., Sivertsen, A. H., Eilertsen, G., & Heia, K. (2012). Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. Journal of Food Engineering, 109(3), 482–489.
Sugiyama, T., Sugiyama, J., Tsuta, M., Fujita, K., Shibata, M., Kokawa, M., et al. (2010). NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries. Journal of Food Engineering, 101(3), 244–252.
Sun, D.-W. (2010). Hyperspectral imaging for food quality analysis and control. San Diego: Academic.
Sun, D.-W., & Brosnan, T. (2003a). Pizza quality evaluation using computer vision - part 1 - Pizza base and sauce spread. Journal of Food Engineering, 57(1), 81–89. doi:10.1016/S0260-8774(02)00275-3.
Sun, D.-W., & Brosnan, T. (2003b). Pizza quality evaluation using computer vision - part 2 - Pizza topping analysis. Journal of Food Engineering, 57(1), 91–95. doi:10.1016/S0260-8774(02)00276-5.
Swierenga, H., de Groot, P. J., de Weijer, A. P., Derksen, M. W. J., & Buydens, L. M. C. (1998). Improvement of PLS model transferability by robust wavelength selection. Chemometrics and Intelligent Laboratory Systems, 41(2), 237–248.
Talens, P., Mora, L., Morsy, N., Barbin, D. F., ElMasry, G., & Sun, D.-W. (2013). Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. Journal of Food Engineering, 117(3), 272–280.
Tao, F., Peng, Y., Li, Y., Chao, K., & Dhakal, S. (2012). Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Science, 90(3), 851–857.
Vagni, F. (2007). Survey of hyperspectral and multispectral imaging technologies. RTO Technical Report, TR-SET-065-P3.
Valous, N. A., Mendoza, F., Sun, D-W., Allen, P. (2009). Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science, 81(1), 132–141
Wallays, C., Missotten, B., De Baerdemaeker, J., & Saeys, W. (2009). Hyperspectral waveband selection for on-line measurement of grain cleanness. Biosystems Engineering, 104(1), 1–7.
Wang, H. H., & Sun, D.-W. (2002). Melting characteristics of cheese: analysis of effect of cheese dimensions using computer vision techniques. Journal of Food Engineering, 52(3), 279–284. doi:10.1016/S0260-8774(01)00116-9.
Wang, G. C., & Jain, C. L. (2003). Regression analysis: modeling and forecasting. Fresh Meadows: Graceway.
Wang, S., Huang, M., & Zhu, Q. (2012a). Model fusion for prediction of apple firmness using hyperspectral scattering image. Computers and Electronics in Agriculture, 80, 1–7.
Wang, W., Peng, Y., Huang, H., & Wu, J. (2011). Application of hyper-spectral imaging technique for the detection of total viable bacteria count in pork. Sensor Letters, 9(3), 1024–1030.
Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012b). Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderiacepacia)-infected onions. Journal of Food Engineering, 109(1), 38–48.
Wold, J. P., Jakobsen, T., & Krane, L. (1996). Atlantic salmon average fat content estimated by near-infrared transmittance spectroscopy. Journal of Food Science, 61, 74–77.
Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.
Workman, J. R. J. J., Mobley, P. R., Kowalski, B. R., & Bro, R. (1996). Review of chemometrics applied to spectroscopy: 1985–98, Part 1. Applied Spectroscopy Reviews, 31, 73–124.
Wu, D., Sun, D.-W., & He, Y. (2012a). Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innovative Food Science & Emerging Technologies, 16, 361–372.
Wu, D., Shi, H., Wang, S., He, Y., Bao, Y., & Liu, K. (2012b). Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Analytica Chimica Acta, 726, 57–66.
Wu, D., Wang, S., Wang, N., Nie, P., He, Y., Sun, D.-W., & Yao, J. (2013). Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration. Food and Bioprocess Technology. doi:10.1007/s11947-012-0928-0.
Wu, D., & Sun, D.-W. (2013). Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta, 111, 39–46.
Wu, J., Peng, Y., Li, Y., Wang, W., Chen, J., & Dhakal, S. (2012c). Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique. Journal of Food Engineering, 109(2), 267–273.
Ye, S. F., Wang, D., & Min, S. G. (2008). Successive projections algorithm combined with uninformative variable elimination for spectral variable selection. Chemometrics and Intelligent Laboratory Systems, 91(2), 194–199.
Zhang, X., & He, Y. (2013). Rapid estimation of seed yield using hyperspectral images of oilseed rape leaves. Industrial Crops and Products, 42, 416–420.
Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. W. (2012). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food and Bioprocess Technology. doi:10.1007/s11947-012-0825-6.
Zou, X., Zhao, J., Malcolm, J. W. P., Mel, H., & Mao, H. (2010a). Variables selection methods in near-infrared spectroscopy. Analytica Chimica Acta, 667(1–2), 14–32.
Zou, X., Zhao, J., Mao, H., Shi, J., Yin, X., & Li, Y. (2010b). Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves. Applied Spectroscopy, 64(7), 786–794.