Recent Advances in 3D Printing for Parenteral Applications

Springer Science and Business Media LLC - Tập 23 - Trang 1-16 - 2021
Ryan Ivone1, Yan Yang2, Jie Shen1,3
1Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, USA
2College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
3Department of Chemical Engineering, University of Rhode Island, Kingston, USA.

Tóm tắt

3D printing has emerged as an advanced manufacturing technology in the field of pharmaceutical sciences. Despite much focus on enteral applications, there has been a lack of research focused on potential benefits of 3D printing for parenteral applications such as wound dressings, biomedical devices, and regenerative medicines. 3D printing technologies, including fused deposition modeling, vat polymerization, and powder bed printing, allow for rapid prototyping of personalized medications, capable of producing dosage forms with flexible dimensions based on patient anatomy as well as dosage form properties such as porosity. Considerations such as printing properties and material selection play a key role in determining overall printability of the constructs. These parameters also impact drug release kinetics, and mechanical properties of final printed constructs, which play a role in modulating immune response upon insertion in the body. Despite challenges in sterilization of printed constructs, additional post-printing processing procedures, and lack of regulatory guidance, 3D printing will continue to evolve to meet the needs of developing effective, personalized medicines for parenteral applications.

Tài liệu tham khảo

CENTER FOR DRUG EVALUATION AND RESEARCH. Approval package for SPRITAM. 2015; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207958Orig1s000Approv.pdf Afsana JV, Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des. 2019;24(42):5062–71. Do A, Worthington K, Tucker B, Salem AK, Therapeutics T, Engineering B, et al. Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices. Int J Pharm. 2019;552:217–24. Buj-Corral I, Bagheri A, Petit-Rojo O. 3D printing of porous scaffolds with controlled porosity and pore size values. Materials (Basel). 2018;11(9):1–18. Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials [Internet]. 2017;135:85–95. Available from. https://doi.org/10.1016/j.biomaterials.2017.05.005. Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J. 3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems. Materials (Basel). 2018;11(9):1–13. Long J, Gholizadeh H, Lu J, Seyfoddin A. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. 2017 433–439. Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm [Internet]. 2016;509(1–2):255–63. Available from. https://doi.org/10.1016/j.ijpharm.2016.05.036. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test. 2018;69(May):157–66. Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials–process perspective. Pharmaceutics. 2020;12:1–34. Algahtani MS, Mohammed AA, Ahmad J. Extrusion-based 3D printing for pharmaceuticals: contemporary research and applications. Curr Pharm Des. 2019;24(42):4991–5008. Araújo MRP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. The digital pharmacies era: how 3D printing technology using fused deposition modeling can become a reality. Pharmaceutics. 2019;11:3. Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C [Internet]. 2019;104:109873. Available from. https://doi.org/10.1016/j.msec.2019.109873. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32. McMains S. Layered manufacturing technologies. Commun ACM. 2005;48(6):50–6. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm [Internet]. 2017;532(1):313–7. Available from. https://doi.org/10.1016/j.ijpharm.2017.09.003. Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J Mater Sci Mater Med. 2014;25(3):845–56. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–30. Gittard S, Narayan R. Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devices. 2010;7(3):343–56. Lee ED, Sim JH, Kweon HJ, Paik IH. Determination of process parameters in stereolithography using neural network. KSME Int J. 2004;18(3):443–52. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP)3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci [Internet]. 2019;135:60–7. Available from. https://doi.org/10.1016/j.ejps.2019.05.008. Lee S-J. Development of 3D printed hydrogel scaffold with core-shell nanoparticles for nerve regeneration. IEEE Trans Biomed Eng. 2015;64(2):408–18. Kim JH, Lee JW, Yun WS. Fabrication and tissue engineering application of a 3D PPF/DEF scaffold using Blu-ray based 3D printing system. J Mech Sci Technol. 2017;31(5):2581–7. Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng. 2006;34(9):1429–41. Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 2010;6(3):1047–54. Konasch J, Riess A, Mau R, Teske M, Rekowska N, Eickner T, et al. A novel hybrid additive manufacturing process for drug delivery systems with locally incorporated drug depots. Pharmaceutics. 2019;11(12):1–14. Robles-Martinez P, Xu X, Trenfield SJ, Awad A, Goyanes A, Telford R, et al. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11:6. Fayazfar H, Salarian M, Rogalsky A, Sarker D, Russo P, Paserin V, et al. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des [Internet]. 2018;144:98–128. Available from. https://doi.org/10.1016/j.matdes.2018.02.018. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, et al. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater [Internet]. 2015;16(3):1–20. Available from. https://doi.org/10.1088/1468-6996/16/3/033502. Rahmati S, Shirazi SF, Baghayeri H. Piezo-electric head application in a new 3D printing design. Rapid Prototyp J. 2009;15(3):187–91. Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1–2):33–8. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm [Internet]. 2017;529(1–2):285–93. Available from. https://doi.org/10.1016/j.ijpharm.2017.06.082. Xia Y, Zhou PY, Cheng XS, Xie Y, Liang C, Li C, et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine. 2013;8:4197–213. Mathew E, Pitzanti G, Larrañeta E, Lamprou DA. Three-dimensional printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12(3):1–9. Yang Y, Li H, Xu Y, Dong Y, Shan W, Shen J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int J Pharm [Internet]. 2019;562:66–75. Available from. https://doi.org/10.1016/j.ijpharm.2019.03.024. Mohan AM, MH AAR. Manufacturing of customized implants for orbital fractures using 3D printing. Bioprinting [Internet]. 2021;21:e00118. Available from. https://doi.org/10.1016/j.bprint.2020.e00118. Yang Y. Strategies and mechanisms to improve the printability of pharmaceutical polymers. International Journal of Pharmaceutics Int J Pharm. 2021. Yang Y, Wang X, Lin X, Xie L, Ivone R, Shen J, et al. A tunable extruded 3D printing platform using thermo-sensitive pastes. Int J Pharm. 2020;583(April). Lucas L, Aravind A, Emma P, Christophe M, Edwin-Joffrey C. Rheology, simulation and data analysis toward bioprinting cell viability awareness. Bioprinting. 2021;21. Yang Y, Zhou Y, Lin X, Yang Q, Yang G. Printability of external and internal structures based on digital light processing 3D printing technique. Pharmaceutics. 2020;12(3):1–16. Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: status and prospects. J Food Eng. 2016;179:44–54. Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng. 2016;2(10):1743–51. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:3. Naghieh S, Sarker MD, Sharma NK, Barhoumi Z, Chen X. Printability of 3D printed hydrogel scaffolds: influence of hydrogel composition and printing parameters. Appl Sci. 2020;10:1. Wang S, Lee JM, Yeong WY. Smart hydrogels for 3D bioprinting. Int J Bioprinting. 2015;1(1):3–14. Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015;7:4. Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;80(3646439):458–64. Wu D, et al. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter. 2019;30. Chin SY, Dikshit V, Priyadarshini BM, Zhang Y. Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines. 2020;11(7):29–40. Delrot P, Modestino MA, Gallaire F, Psaltis D, Moser C. Inkjet printing of viscous monodisperse microdroplets by laser-induced flow focusing. Phys Rev Appl. 2016;6(2):1–8. Azizi Machekposhti S, Movahed S, Narayan RJ. Physicochemical parameters that underlie inkjet printing for medical applications. Biophys Rev [Internet]. 2020;1(1):011301. Available from. https://doi.org/10.1063/5.0011924. Yang Y, Xu Y, Wei S, Shan W. Oral preparations with tunable dissolution behavior based on selective laser sintering technique. Int J Pharm [Internet]. 2021;(593, November 2020):120127. Available from. https://doi.org/10.1016/j.ijpharm.2020.120127. Lu K, Hiser M, Wu W. Effect of particle size on three dimensional printed mesh structures. Powder Technol. 2009;192(2):178–83. Salmoria GV, Klauss P, Zepon KM, Kanis LA. The effects of laser energy density and particle size in the selective laser sintering of polycaprolactone/progesterone specimens: Morphology and drug release. Int J Adv Manuf Technol. 2013;66(5–8):1113–8. Gayer C, Abert J, Bullemer M, Grom S, Jauer L, Meiners W, et al. Influence of the material properties of a poly(D,L-lactide)/β-tricalcium phosphate composite on the processability by selective laser sintering. J Mech Behav Biomed Mater. 2018;87(July):267–78. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm [Internet]. 2018;541(1–2):101–7. Available from. https://doi.org/10.1016/j.ijpharm.2018.02.015. Barakh Ali SF, Mohamed EM, Ozkan T, Kuttolamadom MA, Khan MA, Asadi A, et al. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing. Int J Pharm [Internet]. 2019;570(August):118651. Available from. https://doi.org/10.1016/j.ijpharm.2019.118651. Ahmed KK, Tamer MA, Ghareeb MM, Salem AK. Recent advances in polymeric implants. AAPS PharmSciTech. 2019;20:7. Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials [Internet]. 2020;258(July):120287. Available from. https://doi.org/10.1016/j.biomaterials.2020.120287. Buyuksungur S, Endogan Tanir T, Buyuksungur A, Bektas EI, Torun Kose G, Yucel D, et al. 3D printed poly(ϵ-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci. 2017;5(10):2144–58. Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep. 2001;34(4–5):147–230. Ritz U, Gerke R, Götz H, Stein S, Rommens PM. A new bone substitute developed from 3D-prints of polylactide (PLA) loaded with collagen i: an in vitro study. Int J Mol Sci. 2017;18:12. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev [Internet]. 2016;107:367–92. Available from. https://doi.org/10.1016/j.addr.2016.06.012. Tappa K, Jammalamadaka U, Weisman JA, Ballard DH, Wolford DD, Pascual-Garrido C, et al. 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater. 2019;10:2. Wang S, Xiong Y, Chen J, Ghanem A, Wang Y, Yang J, et al. Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol. 2019;7(November):1–11. Mi H-Y, Salick MR, Jing X, Jacques BR, Crone WC, Peng X-F, et al. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C. 2013;33(8):4767–76. Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 2014;4(AUG):1–7. Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res [Internet]. 2017;5(April):1–19. Available from. https://doi.org/10.1038/boneres.2017.56. Saniei H, Mousavi S. Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity. Polymer (Guildf) [Internet]. 2020;196(March):122467. Available from. https://doi.org/10.1016/j.polymer.2020.122467. Manavitehrani I, Fathi A, Badr H, Daly S, Shirazi AN, Dehghani F. Biomedical applications of biodegradable polyesters. Polymers (Basel). 2016;8:1. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng - Part A. 2012;18(11–12):1304–12. Luo Y, Le Fer G, Dean D, Becker ML. 3D printing of poly(propylene fumarate) oligomers: evaluation of resin viscosity, printing characteristics and mechanical properties. Biomacromolecules. 2019;20(4):1699–708. Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res - Part B Appl Biomater. 2012;100(B5):1451–7. Qamar N, Abbas N, Irfan M, Hussain A, Arshad MS, Latif S, et al. Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia. J Drug Deliv Sci Technol [Internet]. 2019;53(July):101164. Available from. https://doi.org/10.1016/j.jddst.2019.101164. Boyer CJ, Boktor M, Samant H, White LA, Wang Y, Ballard DH, et al. 3D printing for bio-synthetic biliary stents. Bioengineering. 2019;6:1. Wang C, Xie J, Xiao X, Chen S, Wang Y. Development of nontoxic biodegradable polyurethanes based on polyhydroxyalkanoate and l-lysine diisocyanate with improved mechanical properties as new elastomers scaffolds. Polymers (Basel). 2019;11:12. Zdrahala R. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. Polyurethanes as Specialty Chemicals. 1999:67–90. Joseph J, Patel RM, Wenham A, Smith JR. Biomedical applications of polyurethane materials and coatings. Trans Inst Met Finish. 2018;96(3):121–9. Jung SY, Lee SJ, Kim HY, Park HS, Wang Z, Kim HJ, et al. 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Biofabrication. 2016;8:4. Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, et al. Natural polymers for organ 3D bioprinting. Polymers (Basel). 2018;10(11):1–26. Balani K, Verma V, Agarwal A, Narayan R. Physical, thermal, and mechanical properties of polymers. Biosurfaces. 2015:329–44. Ramya R, Venkatesan J, Kim SK, Sudha PN. Biomedical applications of chitosan: an overview. J Biomater Tissue Eng. 2012;2(2):100–11. Vunain E, Mishra AK, Mamba BB. Fundamentals of chitosan for biomedical applications [Internet] 1 Chitosan based biomaterials. Elsevier. 2017:3–30 Available from. https://doi.org/10.1016/B978-0-08-100230-8.00001-7. Zhou HY. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym. 2008;73(2):265–73. Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, et al. Three-dimensional printing constructs based on the chitosan for tissue regeneration: State of the art, developing directions and prospect trends. Materials. 2020;13. Fischetti T, Celikkin N, Contessi Negrini N, Farè S, Swieszkowski W. Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3D printing of uniaxial scaffolds. Front Bioeng Biotechnol. 2020;8(April):1–15. Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym [Internet]. 2018;199(July):593–602. Available from. https://doi.org/10.1016/j.carbpol.2018.07.057. Bettini R, Romani AA, Morganti MM, Borghetti AF. Physicochemical and cell adhesion properties of chitosan films prepared from sugar and phosphate-containing solutions. Eur J Pharm Biopharm. 2008;68(1):74–81. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep [Internet]. 2016;6:1–13. Available from. https://doi.org/10.1038/srep29977. Li J, Liu X, Crook JM, Wallace GG. 3D printing of cytocompatible graphene/alginate scaffolds for mimetic tissue constructs. Front Bioeng Biotechnol. 2020;8(July):1–11. Dicker K. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater [Internet]. 2014;10(4):1558–70 Available from: 10.1016/j.earlhumdev.2015.09.003%5Cn 10.1016/j.earlhumdev.2014.01.002%5Cn 10.1016/S0378-3782(12)70006-3%5Cnhttp://www.sciencedirect.com/science/article/pii/S2341287914000763%5Cn 10.1016/. Vepari C, Kaplan DL. Silk as biomaterial. Prog Polym Sci. 2007;100(2):130–4. Wang Q, Han G, Yan S, Zhang Q. 3D printing of silk fibroin for biomedical applications. Materials (Basel). 2019;12:3. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater [Internet]. 2015;11(1):233–46. Available from. https://doi.org/10.1016/j.actbio.2014.09.023. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58. Somaiah C, Kumar A, Mawrie D, Sharma A. Collagen promotes higher adhesion. Survival and proliferation of mesenchymal stem cells. 2015:1–15. Nocera AD, Comín R, Salvatierra NA, Cid MP. Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed Microdevices. 2018;20(2):1–13. Bello AB, Kim D, Kim D, Park H, Lee S. Engineering and functionalization of gelatin biomaterials. From cell culture to medical applications. 2020;26(2):164–80. Negrini N. 3D printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication. 2019. Stewart SA, Domínguez-Robles J, McIlorum VJ, Mancuso E, Lamprou DA, Donnelly RF, et al. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics. 2020;12:2. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cells Mater. 2015;30:232–47. Martin V, Ribeiro IA, Alves MM, Gonçalves L, Claudio RA, Grenho L, et al. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng C [Internet]. 2019;101(March):15–26. Available from. https://doi.org/10.1016/j.msec.2019.03.056. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm [Internet]. 2018;539(1–2):75–82. Available from https://doi.org/10.1016/j.ijpharm.2018.01.036, 2018 Bagshaw KR, Hanenbaum CL, Carbone EJ, Lo KWH, Laurencin CT, Walker J, et al. Pain management via local anesthetics and responsive hydrogels. Ther Deliv. 2015;6(2):165–76. Dash AK, Cudworth GC. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40(1):1–12. Gimeno M, Pinczowski P, Pérez M, Giorello A, Martínez MÁ, Santamaría J, et al. A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur J Pharm Biopharm. 2015;96:264–71. Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers (Basel). 2018;10:12. Espey E, Ogburn T. Long-acting reversible contraceptives: intrauterine devices and the contraceptive implant. Obstet Gynecol. 2011;117(3):705–19. Tappa K, Jammalamadaka U, Ballard DH, Bruno T, Israel MR, Vemula H, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12(8):1–17. Qiao X, Yang Y, Huang R, Shi X, Chen H, Wang J, et al. E-jet 3D-printed scaffolds as sustained multi-drug delivery vehicles in breast cancer therapy. Pharm Res. 2019;36:12. Won JY, Kim J, Gao G, Kim J, Jang J, Park YH, et al. 3D printing of drug-loaded multi-shell rods for local delivery of bevacizumab and dexamethasone: a synergetic therapy for retinal vascular diseases. Acta Biomater [Internet]. 2020;116:174–85. Available from. https://doi.org/10.1016/j.actbio.2020.09.015. Lim SH, Chia SMY, Kang L, Yap KYL. Three-dimensional printing of carbamazepine sustained-release scaffold. J Pharm Sci [Internet]. 2016;105(7):2155–63. Available from. https://doi.org/10.1016/j.xphs.2016.04.031. Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater [Internet]. 2016;46:256–65. Available from. https://doi.org/10.1016/j.actbio.2016.09.030. Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, et al. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater Sci Eng C [Internet]. 2017;74:525–35. Available from. https://doi.org/10.1016/j.msec.2016.12.054. Yang S, Leong KF. The design of scaffolds for use in tissue engineering. Part II Rapid Prototyping Techniques. 2002;8:1. He D, Zhuang C, Chen C, Xu S, Yang X, Yao C, et al. Rational design and fabrication of porous calcium-magnesium silicate constructs that enhance angiogenesis and improve orbital implantation. ACS Biomater Sci Eng. 2016;2(9):1519–27. Ho MY, Chen CC, Wang CY, Chang SH, Hsieh MJ, Lee CH, et al. The development of coronary artery stents: from bare-metal to bio-resorbable types. Metals (Basel). 2016;6:7. Ang HY, Huang YY, Lim ST, Wong P, Joner M, Foin N. Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents. J Thorac Dis. 2017;9(Suppl 9):S923–34. J Guerra A. 3D-printed bioabsordable polycaprolactone stent: the effect of process parameters on its physical features. Mater Des. 2018;137:430–7. Kim TH, Lee JH, Ahn CB, Hong JH, Son KH, Lee JW. Development of a 3D-printed drug-eluting stent for treating obstructive salivary gland disease. ACS Biomater Sci Eng. 2019;5(7):3572–81. Wilson K, Meier J, Ward D. Salivary gland disorders - American family physician. Am Acad Dermatology. 2014;89(11):882–8. Guo S, DiPietro LA. Critical review in oral biology & medicine: factors affecting wound healing. J Dent Res. 2010;89(3):219–29. Malda J. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–28. Van Kogelenberg S, Yue Z, Dinoro JN, Baker CS, Wallace GG. Three-dimensional printing and cell therapy for wound repair. Adv Wound Care. 2018;7(5):145–55. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1:–2. Wen YT, Dai NT, Hui HS. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Acta Biomater [Internet]. 2019;88:301–13. Available from. https://doi.org/10.1016/j.actbio.2019.02.044. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm [Internet]. 2017;527(1–2):161–70. Available from. https://doi.org/10.1016/j.ijpharm.2017.04.077. Worm M, Nguyen D, Rackley R, Muraro A, Du Toit G, Lawrence T, et al. Epinephrine delivery via EpiPen®Auto-Injector or manual syringe across participants with a wide range of skin-to-muscle distances. Clin Transl Allergy [Internet]. 2020;10(1):1–13. Available from. https://doi.org/10.1186/s13601-020-00326-x. Uguz A, Lack G, Pumphrey R, Ewan P, Warner J, Dick J, et al. Allergic reactions in the community: a questionnaire survey of members of the anaphylaxis campaign. Clin Exp Allergy. 2005;35(6):746–50. Korenblat P, Lundie MJ, Dankner RE, Day JH. A retrospective study of epinephrine administration for anaphylaxis: how many doses are needed? Allergy Asthma Proc. 1999;20(6):383–6. Sheehan TC. Design of a double-dose epinephrine auto- injector using 3D-printing. 2015; Nair G, Levin M, Sivarasu S. Design and verification of a reloadable adrenaline auto-injector for intramuscular injections. Front Biomed Devices, BIOMED Des Med Devices Conf DMD 2018 2–4. Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol. 2019;257(9):1815–22. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res [Internet]. 2018;173(March):188–93. Available from. https://doi.org/10.1016/j.exer.2018.05.010. Moniaux N, Faivre J. A reengineered liver for transplantation. J Hepatol. 2011;54(2):386–7. Srinivas L, Jaswitha M, Manikanta V, Bhavya B, Himavant BD. 3D printing in pharmaceutical technology: a review. Int Res J Pharm. 2019;10(2):8–17. Farra R, Sheppard NF, McCabe L, Neer RM, Anderson JM, Santini JT, et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med. 2012;4:122. Dagdeviren C, Ramadi KB, Joe P, Spencer K, Helen N, Shimazu H, et al. Miniaturized neural system for chronic, local intracerebral drug delivery. 2019;10(425). Kong YL, Zou X, McCandler CA, Kirtane AR, Ning S, Zhou J, et al. 3D-printed gastric resident electronics. Adv Mater Technol. 2019;4:3. Gujrati A, Sharma A, Mahajan SC. Review on applications of 3D printing in pharmaceuticals. Int J Pharm Sci Rev Res [Internet]. 2019;59(1):148–54 Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L2003257894. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–34. Stoppel WL, White JC, Horava SD, Henry AC, Roberts SC, Bhatia SR. Terminal sterilization of alginate hydrogels: efficacy and impact on mechanical properties. J Biomed Mater Res - Part B Appl Biomater. 2014;102(4):877–84. Török G, Gombocz P, Bognár E, Nagy P, Dinya E, Kispélyi B, et al. Effects of disinfection and sterilization on the dimensional changes and mechanical properties of 3D printed surgical guides for implant therapy - pilot study. BMC Oral Health. 2020;20(1):1–12. Nguyen A, Goering P, Reipa V, Narayan R. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with human primary renal proximal tubule epithelial cells:1–22. Sabnis A. Cytocompatibility Studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. 2010;91(1):52–9. Choi G, Cha HJ. Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering. 2019;1–7. Bergonzi C, Natale A Di, Zimetti F, Marchi C, Bianchera A, Bernini F, et al. Study of 3D-printed chitosan scaffold features after different post-printing gelation processes. 2019;(February):1–11. 510(k) Premarket notification. US Food and Drug Administration [Internet]. Available from. www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm. Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22:1. FDA. Technical considerations for additive manufactured devices draft guidance for industry and [Internet]. 2016. 28. Available from: http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM499809.pdf Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products – the FDA perspective. 3D Print Med [Internet]. 2016;2(1):4–9. Available from. https://doi.org/10.1186/s41205-016-0005-9.