Rea regulates microglial polarization and attenuates neuronal apoptosis via inhibition of the NF‐κB and MAPK signalings for spinal cord injury repair

Journal of Cellular and Molecular Medicine - Tập 25 Số 3 - Trang 1371-1382 - 2021
Shining Xiao1, Chenggui Wang1, Quanming Yang1, Haibin Xu1, Jinwei Lu1, Kan Xu1
1Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China

Tóm tắt

Abstract

Inflammation and neuronal apoptosis aggravate the secondary damage after spinal cord injury (SCI). Rehmannioside A (Rea) is a bioactive herbal extract isolated from Rehmanniae radix with low toxicity and neuroprotection effects. Rea treatment inhibited the release of pro‐inflammatory mediators from microglial cells, and promoted M2 polarization in vitro, which in turn protected the co‐cultured neurons from apoptosis via suppression of the NF‐κB and MAPK signalling pathways. Furthermore, daily intraperitoneal injections of 80 mg/kg Rea into a rat model of SCI significantly improved the behavioural and histological indices, promoted M2 microglial polarization, alleviated neuronal apoptosis, and increased motor function recovery. Therefore, Rea is a promising therapeutic option for SCI and should be clinically explored.

Từ khóa


Tài liệu tham khảo

10.1136/oemed-2019-106012

10.1021/acs.nanolett.0c00929

10.1111/j.1471-4159.2007.04671.x

10.1002/glia.23706

10.1242/dmm.025833

10.3171/jns.1991.75.1.0015

Tran AP, 2018, The biology of regeneration failure and success after spinal cord, Injury, 98, 881

10.1007/s00401-019-01992-3

10.1111/jcmm.14776

10.1016/j.biomaterials.2020.119941

10.1111/imm.12163

10.1126/sciadv.aay9751

10.1111/jcmm.13368

10.7150/thno.37601

10.1038/nm0197-73

10.1038/s41467-019-08605-3

10.1007/s00401-016-1541-5

10.3390/cells8070739

10.1007/s10753-019-01083-1

10.1016/j.bcp.2017.10.010

10.3390/ijms18112383

10.1042/CS20190779

10.3109/10799893.2015.1030412

Thalhamer T, 2008, MAPKs and their relevance to arthritis and inflammation, Rheumatology, 409

10.1016/j.biopha.2019.109492

Uddin R, 2013, Neuroprotective effects of medicinal plants, EXCLI J, 12, 541

10.3171/jns.1977.47.4.0577

10.1016/0014-4886(82)90234-5

10.1016/j.bcp.2019.113715

10.1002/smll.201906415

10.1371/journal.pbio.2005264

10.1016/j.scitotenv.2020.137907

10.1016/j.expneurol.2020.113374

10.1038/nature16035

10.1016/S0079-6123(06)61001-7

10.1007/s13311-019-00820-6

10.7150/ijbs.30348

10.1016/j.brainresbull.2019.03.014

10.1016/j.cmet.2020.02.002

10.3390/cells9051310

10.18632/aging.103125

10.1016/j.bbi.2020.06.001

10.1016/j.pneurobio.2019.101719

10.1016/j.molmed.2018.11.005

10.1016/j.bbr.2017.06.027

10.1016/j.phrs.2019.104253

Shi C‐X, 2018, Effects of sevoflurane post‐conditioning in cerebral ischemia‐reperfusion injury via TLR4/NF‐κB pathway in rats, Eur Rev Med Pharmacol Sci, 22, 1770

10.1016/j.arr.2017.02.004

10.2174/156652412798889090

10.3390/cells9061348

10.1016/j.biopha.2020.110301

10.3390/cells9040857

10.1016/j.lfs.2020.117885

10.1016/j.biomaterials.2020.119830

10.1016/j.jcyt.2020.01.016