Tái diễn giải khả năng giải thích của quy tắc

Linara Adilova1,2, Michael Kamp1,3,4, Gennady Andrienko2,5, Natalia Andrienko2,5
1Ruhr University Bochum, Bochum, Germany
2Fraunhofer Institute IAIS, Sankt Augustin, Germany
3IKIM, University Medicine Essen, Essen, Germany
4Monash University, Melbourne, Australia
5City, University of London, London, UK

Tóm tắt

Việc học máy đáng tin cậy yêu cầu một mức độ cao về khả năng giải thích của các mô hình học máy, trong khi nhiều mô hình vốn dĩ là các hộp đen. Việc huấn luyện các mô hình có thể giải thích thay vào đó—hoặc sử dụng chúng để mô phỏng mô hình hộp đen—có vẻ như là một giải pháp khả thi. Tuy nhiên, trên thực tế, các mô hình có thể giải thích này vẫn khó hiểu do kích thước và độ phức tạp của chúng. Trong bài báo này, chúng tôi trình bày một phương pháp để giải thích logic của các mô hình có thể giải thích lớn mà có thể được biểu diễn dưới dạng các tập hợp quy tắc logic thông qua một mô hình mô tả đơn giản và do đó dễ hiểu. Mức độ chi tiết của mô hình mô tả này và độ chính xác của nó với mô hình gốc có thể được kiểm soát, để người dùng có thể hiểu mô hình gốc ở các mức độ sâu khác nhau. Chúng tôi trình bày và thảo luận về phương pháp này trên ba vấn đề thực tế từ y tế, khoa học vật liệu và tài chính.

Từ khóa

#học máy #khả năng giải thích #mô hình #quy tắc logic #y tế #khoa học vật liệu #tài chính

Tài liệu tham khảo

Ribeiro, M., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 97–101. Association for Computational Linguistics, San Diego (2016) Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). https://doi.org/10.1145/3236009 Kovalerchuk, B., Ahmad, M.A., Teredesai, A.: Survey of explainable machine learning with visual and granular methods beyond quasi-explanations. In: Pedrycz, W., Chen, S.M. (eds.) Interpretable artificial intelligence: a perspective of granular computing, pp. 217–267. Springer (2021) Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015) Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018) Quinlan, J.R.: Generating production rules from decision trees. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence—Volume 1. IJCAI’87, pp. 304–307. Morgan Kaufmann Publishers Inc. (1987) Arya, V., Bellamy, R.K., Chen, P.Y., Dhurandhar, A., Hind, M., Hoffman, S.C., et al.: One explanation does not fit all: a toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012 (2019) Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011) Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2(3), 916–954 (2008) Al-Akhras, M., El Hindi, K., Habib, M., Shawar, B.A., et al.: Instance reduction for avoiding overfitting in decision trees. J. Intell. Syst. 30(1), 438–459 (2021) Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000) Esposito, F., Malerba, D., Semeraro, G., Kay, J.: A comparative analysis of methods for pruning decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 476–491 (1997). https://doi.org/10.1109/34.589207 Helmbold, D.P., Schapire, R.E.: Predicting nearly as well as the best pruning of a decision tree. Mach. Learn. 27(1), 51–68 (1997) Dash, S., Gunluk, O., Wei, D.: Boolean decision rules via column generation. Adv. Neural Inf. Process. Syst. 31, 4655–4665 (2018) Su, G., Wei, D., Varshney, K.R., Malioutov, D.M.: Learning sparse two-level boolean rules. In: IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 IEEE (2016) Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1675–1684 (2016) Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: A Bayesian framework for learning rule sets for interpretable classification. J. Mach. Learn. Res. 18(1), 2357–2393 (2017) Joly, A., Schnitzler, F., Geurts, P., Wehenkel, L.: L1-based compression of random forest models. In: 20th European Symposium on Artificial Neural Networks (2012) Painsky, A., Rosset, S.: Lossless compression of random forests. J. Comput. Sci. Technol. 34(2), 494–506 (2019) BuciluǎC, Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006) Bohanec, M., Bratko, I.: Trading accuracy for simplicity in decision trees. Mach. Learn. 15(3), 223–250 (1994) Qiao, L., Wang, W., Lin, B.: Learning accurate and interpretable decision rule sets from neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 4303–4311 (2021) Freitas, A.A.: Comprehensible classification models: a position paper. ACM SIGKDD explorations newsletter, pp. 1–10 (2014) Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987) Bénard, C., Biau, G., Veiga, S., Scornet, E.: Interpretable random forests via rule extraction. In: International Conference on Artificial Intelligence and Statistics. pp. 937–945. PMLR (2021) Izza, Y., Ignatiev, A., Marques-Silva, J.: On explaining decision trees. arXiv preprint arXiv:2010.11034 (2020) Hulot, A., Chiquet, J., Jaffrezic, F., Rigaill, G.: Fast tree aggregation for consensus hierarchical clustering: application to multi-omics data analysis. In: Statistical Methods for Post-Genomic Data (SMPGD) (2019) Kavšek, B., Lavrač, N., Ferligoj, A.: Consensus decision trees: using consensus hierarchical clustering for data relabelling and reduction. In: European Conference on Machine Learning, pp. 251–262. Springer (2001) Strecht, P., Mendes-Moreira, J., Soares, C.: Inmplode: a framework to interpret multiple related rule-based models. Expert Syst. 38(6), e12702 (2021) Andrzejak, A., Langner, F., Zabala, S.: Interpretable models from distributed data via merging of decision trees. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 1–9. IEEE (2013) Andrienko, N., Andrienko, G., Fuchs, G., Slingsby, A., Turkay, C., Wrobel, S.: Visual analytics for data scientists. Springer (2020) Sacha, D., Kraus, M., Keim, D.A., Chen, M.: VIS4ML: an ontology for visual analytics assisted machine learning. IEEE Trans. Vis. Comput. Graph. 25(1), 385–395 (2019). https://doi.org/10.1109/TVCG.2018.2864838 Andrienko, N., Lammarsch, T., Andrienko, G., Fuchs, G., Keim, D., Miksch, S., et al.: Viewing visual analytics as model building. Comput. Graph. Forum 37(6), 275–299 (2018). https://doi.org/10.1111/cgf.13324 Andrienko, N., Andrienko, G., Miksch, S., Schumann, H., Wrobel, S.: A theoretical model for pattern discovery in visual analytics. Vis. Inf. 5(1), 23–42 (2021). https://doi.org/10.1016/j.visinf.2020.12.002 Spinner, T., Schlegel, U., Schäfer, H., El-Assady, M.: explAIner: a visual analytics framework for interactive and explainable machine learning. IEEE Trans. Vis. Comput. Graph. 26(1), 1064–1074 (2020). https://doi.org/10.1109/TVCG.2019.2934629 Ming, Y., Qu, H., Bertini, E.: RuleMatrix: visualizing and understanding classifiers with rules. IEEE Trans. Vis. Comput. Graph. 25(1), 342–352 (2019). https://doi.org/10.1109/TVCG.2018.2864812 Yuan, J., Nov, O., Bertini, E.: Visualizing rule sets: exploration and validation of a design space. arXiv preprint arXiv:2103.01022 (2021) Rote, G.: Computing the minimum Hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 38(3), 123–127 (1991) Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912). https://doi.org/10.1111/j.1469-8137.1912.tb05611.x van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 11(9), 2579–2605 (2008) Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering structure. SIGMOD Rec. 28(2), 49–60 (1999). https://doi.org/10.1145/304181.304187 Dua, D., Graff, C.: UCI machine learning repository. http://archive.ics.uci.edu/ml Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sa, J., Pereira-Leite, L.: SisPorto 2.0: a program for automated analysis of cardiotocograms. J. Matern. Fetal Med. 9(5), 311–318 (2000) Sutton, C., Ghiringhelli, L.M., Yamamoto, T., Lysogorskiy, Y., Blumenthal, L., Hammerschmidt, T., et al.: Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition. NPJ Comput. Mater. 5(1), 1–11 (2019) Bartók, A.P., Payne, M.C., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104(13), 136403 (2010) Huo, H., Rupp, M.: Unified representation of molecules and crystals for machine learning. arXiv preprint arXiv:1704.06439 (2017) Sutton, C., Boley, M., Ghiringhelli, L.M., Rupp, M., Vreeken, J., Scheffler, M.: Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11(1), 1–9 (2020) Chen, C., Lin, K., Rudin, C., Shaposhnik, Y., Wang, S., Wang, T.: A holistic approach to interpretability in financial lending: models, visualizations, and summary-explanations. Decis. Support Syst. 152, 113647 (2022). https://doi.org/10.1016/j.dss.2021.113647