Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol

Journal of Computational Chemistry - Tập 32 Số 8 - Trang 1725-1733 - 2011
Mohammednoor Altarawneh1, Ala’a H. Al‐Muhtaseb1, Bogdan Z. Dlugogorski2, Eric M. Kennedy2, John C. Mackie2
1Department of Chemical Engineering, Al‐Hussein Bin Talal University, Ma'an‐Jordan, Jordan
2Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia

Tóm tắt

AbstractAn important step in the initial oxidation of hydrocarbons at low to intermediate temperatures is the abstraction of H by hydroperoxyl radical (HO2). In this study, we calculate energy profiles for the sequence: reactant + HO2 → [complex of reactants] → transition state → [complex of products] → product + H2O2 for methanol, ethenol (i.e., C2H3OH), acetaldehyde, toluene, and phenol. Rate constants are provided in the simple Arrhenius form. Reasonable agreement was obtained with the limited literature data available for acetaldehyde and toluene. Addition of HO2 to the various distinct sites in phenol is investigated. Direct abstraction of the hydroxyl H was found to dominate over HO2 addition to the ring. The results presented herein should be useful in modeling the lower temperature oxidation of the five compounds considered, especially at low temperature where the HO2 is expected to exist at reactive levels. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011

Từ khóa


Tài liệu tham khảo

10.1021/jp0024874

Suzaki K., 2007, Proc Combust Inst, 31, 295, 10.1016/j.proci.2006.08.115

Suzaki K., 2007, J Phys Chem A, 111, 3776, 10.1021/jp067646j

10.1016/j.proci.2006.07.068

10.1016/S1540-7489(02)80155-9

10.1016/j.combustflame.2009.12.020

10.1016/S0069-8040(97)80016-7

10.1016/j.proci.2004.08.179

10.1021/jp052718c

10.1016/j.proci.2010.05.054

10.1021/jp046329e

10.1021/j100121a031

10.1016/S0082-0784(00)80554-8

10.1016/j.proci.2004.08.281

10.1016/S0082-0784(00)80544-5

10.1016/j.proci.2004.08.076

10.1016/j.proci.2006.08.091

10.1021/jp8012464

Frisch M. J., 2001, Gaussian 03, revision A.11

10.1021/jp049908s

10.1063/1.481224

10.1063/1.439657

10.1063/1.467306

10.1063/1.2436888

10.1103/PhysRev.140.A1133

10.1021/jp045141s

10.1063/1.1749604

10.1103/PhysRev.35.1303

Duncan W. T., 1998, J Comput Chem, 19, 1038, 10.1002/(SICI)1096-987X(19980715)19:9<1039::AID-JCC5>3.0.CO;2-R

10.1063/1.435172

Lilienfeld O. A., 2004, Phys Rev Lett, 93, 153

10.1103/PhysRevLett.91.126402

10.1002/kin.20294

10.1021/ja010942j

10.1016/j.cplett.2006.04.022

da Silva G., 2005, J Phys Chem A, 113, 6112

Benson S. W., 1976, Thermochemical Kinetics

10.1039/ft9949002303

10.1021/jp026581r

Afeefy H. Y., 2005, NIST Chemistry WebBook, NIST Standard Reference Database Number 69

10.1021/jp056311j

10.1016/S0082-0784(98)80407-4

10.1016/S0010-2180(02)00350-4

10.1063/1.555953

10.1002/kin.20294

10.1016/j.proci.2010.05.066

10.1021/jp1047002

10.1016/j.pecs.2008.12.001

10.1021/jp0211842