Rare RNF213 variants and the risk of intracranial artery stenosis/occlusion disease in Chinese population: a case-control study

Springer Science and Business Media LLC - Tập 20 - Trang 1-7 - 2019
Xin Liao1, Tong Zhang2, Bingyang Li1, Shimin Hu1, Junyu Liu3, Jing Deng1, Hongzhuan Tan1, Junxia Yan1
1Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
2Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
3Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China

Tóm tắt

RNF213 rare variant-p.R4810K (rs112735431) was significantly associated with intracranial artery stenosis/occlusion disease (ICASO) in Japan and Korea and to a lesser degree in China. Considering the allelic heterogeneity, we performed target exome sequencing of RNF213 with the aim to identify the rare variants spectrum and their association with ICASO in a Chinese population and further to explore whether the rare variants carrier patients present specific clinical phenotype. Target exome sequencing of RNF213 was performed in 250 ICASO patients using FastTarget sequencing technology. Various filtering process were used to select the candidate variants. Control individuals were obtain from 1000 Genome Project (208 Chinese samples) and GeneSky in-house database (1007 samples). Gene-based association analyses were conducted to identify the association between RNF213 rare variants and ICASO. The clinical characteristics of rare variant carriers and non-carriers were compared using Chi-squared test or Fisher’s exact test. After filtration, 18 rare variants were identified in 39 patients. Gene-based association test showed that rare variants of RNF213 were significantly associated with ICASO (Minor allele frequency < 0.05, WSS p = 4.88 × 10− 10; SKAT p = 9.68 × 10− 6; SKAT-O p = 3.42 × 10− 9). There were no significant clinical characteristic differences other than the diagnosis age which was older in the carriers than the non-carriers (60.5 ± 6.2 vs 57.3 ± 8.9 years old, p = 0.028). Rare variants of RNF213 are associated with ICASO in Chinese. However, there are limited genetic diagnosis values of the gene due to no specific phenotypic presentation in the carriers and non carrier patients.

Tài liệu tham khảo

Suri MF, Qiao Y, Ma X, Guallar E, Zhou J, Zhang Y, et al. Prevalence of intracranial atherosclerotic stenosis using high-resolution magnetic resonance angiography in the general population: the atherosclerosis risk in communities study. Stroke. 2016;47(5):1187–93. Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke. 2006;1(3):158–9. Miyawaki S, Imai H, Shimizu M, Yagi S, Ono H, Mukasa A, et al. Genetic variant RNF213 c.14576G>a in various phenotypes of intracranial major artery stenosis/occlusion. Stroke. 2013;44(10):2894–7. Miyawaki S, Imai H, Takayanagi S, Mukasa A, Nakatomi H, Saito N. Identification of a genetic variant common to moyamoya disease and intracranial major artery stenosis/occlusion. Stroke. 2012;43(12):3371–4. Bang OY, Ryoo S, Kim SJ, Yoon CH, Cha J, Yeon JY, et al. Adult Moyamoya disease: a burden of intracranial stenosis in east Asians? PLoS One. 2015;10(6):e0130663. Bang OY, Chung JW, Cha J, Lee MJ, Yeon JY, Ki CS, et al. A polymorphism in RNF213 is a susceptibility gene for intracranial atherosclerosis. PLoS One. 2016;11(6):e0156607. Kim YJ, Lee JK, Ahn SH, Kim BJ, Kang DW, Kim JS, et al. Nonatheroscleotic isolated middle cerebral artery disease may be early manifestation of Moyamoya disease. Stroke. 2016;47(9):2229–35. Park YS, An HJ, Kim JO, Kim WS, Han IB, Kim OJ, et al. The role of RNF213 4810G>a and 4950G>a variants in patients with Moyamoya disease in Korea. Int J Mol Sci. 2017;18(11). https://doi.org/10.3390/ijms18112477. Zhang T, Guo C, Liao X, Xia J, Wang X, Deng J, et al. Genetic analysis of RNF213 p.R4810K variant in non-moyamoya intracranial artery stenosis/occlusion disease in a Chinese population. Environ Health Prev Med. 2017;22(1):41. Shinya Y, Miyawaki S, Imai H, Hongo H, Ono H, Takenobu A, et al. Genetic analysis of ring finger protein 213 (RNF213) c.14576G>a in intracranial atherosclerosis of the anterior and posterior circulations. J Stroke Cerebrovasc Dis. 2017;26(11):2638–44. Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet. 2011;56(1):34–40. Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6(7):e22542. Miyatake S, Miyake N, Touho H, Nishimura-Tadaki A, Kondo Y, Okada I, et al. Homozygous c.14576G>a variant of RNF213 predicts early-onset and severe form of moyamoya disease. Neurology. 2012;78(11):803–10. Wu Z, Jiang H, Zhang L, Xu X, Zhang X, Kang Z, et al. Molecular analysis of RNF213 gene for moyamoya disease in the Chinese Han population. PLoS One. 2012;7(10):e48179. Wang X, Zhang Z, Liu W, Xiong Y, Sun W, Huang X, et al. Impacts and interactions of PDGFRB, MMP-3, TIMP-2, and RNF213 polymorphisms on the risk of Moyamoya disease in Han Chinese human subjects. Gene. 2013;526(2):437–42. Bang OY. Intracranial atherosclerosis: current understanding and perspectives. J Stroke. 2014;16(1):27–35. Kim EH, Yum MS, Ra YS, Park JB, Ahn JS, Kim GH, et al. Importance of RNF213 polymorphism on clinical features and long-term outcome in moyamoya disease. J Neurosurg. 2015;124(5):1221–7. Lee MJ, Chen YF, Fan PC, Wang KC, Wang K, Wang J, et al. Mutation genotypes of RNF213 gene from moyamoya patients in Taiwan. J Neurol Sci. 2015;353(1–2):161–5. Huang Y, Cheng D, Zhang J, Zhao W. Association between RNF213 gene polymorphisms and the genetic susceptibility of adult moyamoya disease of Zhuang population in Guangxi. J Apoplexy Nerv Dis. 2015;32(10):918–21. Xue S, Cheng W, Wang W, Song H, Feng W, Ovbiagele B. Genetic variant RNF213 in non-MMD intracranial major artery stenosis/occlusion in Chinese Han population and HR-MRI findings. Stroke. 2017;48(Suppl 1):AWP151. Zhang Q, Liu Y, Zhang D, Wang R, Zhang Y, Wang S, et al. RNF213 as the major susceptibility gene for Chinese patients with moyamoya disease and its clinical relevance. J Neurosurg. 2017;126(4):1106–13. Liao X, Deng J, Dai W, Zhang T, Yan J. Rare variants of RNF213 and moyamoya/non-moyamoya intracranial artery stenosis/occlusion disease risk: a meta-analysis and systematic review. Environ Health Prev Med. 2017;22(1):75. Koizumi A, Kobayashi H, Hitomi T, Harada KH, Habu T, Youssefian S. A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med. 2016;21(2):55–70. Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009;5(2):e1000384. Moteki Y, Onda H, Kasuya H, Yoneyama T, Okada Y, Hirota K, et al. Systematic validation of RNF213 coding variants in Japanese patients with Moyamoya disease. J Am Heart Assoc. 2015;4(5). https://doi.org/10.1161/JAHA.115.001862. Shoemaker LD, Clark MJ, Patwardhan A, Chandratillake G, Garcia S, Chen R, et al. Disease variant landscape of a large multiethnic population of Moyamoya patients by exome sequencing. G3 (Bethesda, Md). 2015;6(1):41–9. Cecchi AC, Guo D, Ren Z, Flynn K, Santos-Cortez RL, Leal SM, et al. RNF213 rare variants in an ethnically diverse population with Moyamoya disease. Stroke. 2014;45(11):3200–7. Miyatake S, Touho H, Miyake N, Ohba C, Doi H, Saitsu H, et al. Sibling cases of moyamoya disease having homozygous and heterozygous c.14576G>a variant in RNF213 showed varying clinical course and severity. J Hum Genet. 2012;57(12):804–6.