Rapid automated determination of chemical shift anisotropy values in the carbonyl and carboxyl groups of fd-y21m bacteriophage using solid state NMR
Tóm tắt
Determination of chemical shift anisotropy (CSA) in immobilized proteins and protein assemblies is one of several tools to determine protein dynamics on the timescales of microseconds and faster. The large CSA values of C=O groups in the rigid limit makes them in particular attractive for measurements of large amplitude motions, or their absence. In this study, we implement a 3D R-symmetry-based sequence that recouples the second spatial component of the 13C CSA with the corresponding isotropic 13C′–13C cross-peaks in order to probe backbone and sidechain dynamics in an intact fd-y21m filamentous phage viral capsid. The assignment of the isotropic cross-peaks and the analysis were conducted automatically using a new software named ‘Raven’. The software can be utilized to auto-assign any 2D 13C–13C or 15N–13C spectrum given a previously-determined assignment table and generates simultaneously all intensity curves acquired in the third dimension. Here, all CSA spectra were automatically generated, and subsequently matched against a simulated set of CSA curves to yield their values. For the multi-copy, 50-residue-long protein capsid of fd-y21m, the backbone of the helical region is rigid, with reduced CSA values of ~ 12.5 kHz (~ 83 ppm). The N-terminus shows motionally-averaged CSA lineshapes and the carboxylic sidechain groups of four residues indicate large amplitude motions for D4, D5, D12 and E20. The current results further strengthen our previous studies of 15N CSA values and are in agreement with qualitative analysis of 13C–13C dipolar build-up curves, which were automatically obtained using our software. Our automated analysis technique is general and can be applied to study protein structure and dynamics, with data resulting from experiments that probe different variables such as relaxation rates and scaled anisotropic interactions.
Tài liệu tham khảo
Abramov G, Morag O, Goldbourt A (2015) Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface. J Magn Reson 253:80–90. https://doi.org/10.1016/j.jmr.2015.01.011
Abramov G, Shaharabani R, Morag O, Avinery R, Haimovich A, Oz I, Beck R, Goldbourt A (2017) Structural effects of single mutations in a filamentous viral capsid across multiple length scales. Biomacromolecules 18:2258–2266. https://doi.org/10.1021/acs.biomac.7b00125
Aharoni T, Goldbourt A (2018) Dynamics and rigidity of an intact filamentous bacteriophage virus probed by magic angle spinning NMR. Chem Eur J. https://doi.org/10.1002/chem.201800532
Bak M, Rasmussen JT, Nielsen NC (2011) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 213:366–400. https://doi.org/10.1016/j.jmr.2011.09.008
Chan JCC, Tycko R (2003) Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems. J Chem Phys 118:8378–8389. https://doi.org/10.1063/1.1565109
Colnago LA, Valentine KG, Opella SJ (1987) Dynamics of fd coat protein in the bacteriophage. Biochemistry 26:847–854. https://doi.org/10.1021/bi00377a028
Day LA (2008) Encyclopedia of virology, 3rd edn. Elsevier, Oxford. https://doi.org/10.1016/B978-012374410-4.00398-8
Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809
Dogic Z, Fraden S (2000) Cholesteric phase in virus suspensions. Langmuir 16:7820–7824. https://doi.org/10.1021/la000446t
Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305. https://doi.org/10.1021/ja044497e
Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer R-M, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Natl Acad Sci USA 105:4621–4626. https://doi.org/10.1073/pnas.0712393105
Frericks Schmidt HL, Shah GJ, Sperling LJ, Rienstra CM (2010) NMR determination of protein pK(a) values in the solid state. J Phys Chem Lett 1:1623–1628. https://doi.org/10.1021/jz1004413
Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco
Goldbourt A, Gross BJ, Day LA, McDermott AE (2007) Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J Am Chem Soc 129:2338–2344. https://doi.org/10.1021/ja066928u
Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V (2014) Conformational dynamics of a seven transmembrane helical protein anabaena sensory rhodopsin probed by solid-state NMR. J Am Chem Soc 136:2833–2842. https://doi.org/10.1021/ja411633w
Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053. https://doi.org/10.1103/PhysRev.128.2042
Hong M, Gross JD, Rienstra CM, Griffin RG, Kumashiro KK, Schmidt-Rohr K (1997) Coupling amplification in 2D MAS NMR and its application to torsion angle determination in peptides. J Magn Reson 129:85–92. https://doi.org/10.1006/jmre.1997.1242
Hou G, Byeon I-JL, Ahn J, Gronenborn AM, Polenova T (2011) 1H-13C/1H-15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids. J Am Chem Soc 133:18646–18655. https://doi.org/10.1021/ja203771a
Hou G, Byeon IJL, Ahn J, Gronenborn AM, Polenova T (2012) Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy. J Chem Phys 137:134201. https://doi.org/10.1063/1.4754149
Hung I, Ge Y, Liu X, Liu M, Li C, Gan Z (2015) Measuring 13C/15N chemical shift anisotropy in [13C,15N] uniformly enriched proteins using CSA amplification. Solid State Nucl Magn Reson 72:96–103. https://doi.org/10.1016/j.ssnmr.2015.09.002
Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A (2015) Site-resolved backbone and side-chain intermediate dynamics in a carbohydrate-binding module protein studied by magic-angle spinning nmr spectroscopy. Chem Eur J 21:10778–10785. https://doi.org/10.1002/chem.201500856
Levitt MH, Grant DM, Harris RK (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. Encycl Magn Reson 9:165–196. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.5162&rep=rep1&type=pdf. Accessed 10 August 2017
Lewandowski JR (2013) Advances in solid-state relaxation methodology for probing site-specific protein dynamics. Acc Chem Res 46:2018–2027. https://doi.org/10.1021/ar300334g
Lorieau JL, Day LA, McDermott AE (2008) Conformational dynamics of an intact virus: order parameters for the coat protein of Pf1 bacteriophage. Proc Natl Acad Sci USA 105:10366–10371. https://doi.org/10.1073/pnas.0800405105
Marvin DA, Welsh LC, Symmons MF, Scott WRP, Straus SK (2006) Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J Mol Biol 355:294–309. https://doi.org/10.1016/j.jmb.2005.10.048
Marvin DA, Symmons MF, Straus SK (2014) Structure and assembly of filamentous bacteriophages. Prog Biophys Mol Biol 114:80–122. https://doi.org/10.1016/j.pbiomolbio.2014.02.003
Marzec CJ, Day LA (1988) A theory of the symmetries of filamentous bacteriophages. Biophys J 53:425–440. https://doi.org/10.1016/S0006-3495(88)83119-9
Morag O, Abramov G, Goldbourt A (2011) Similarities and differences within members of the Ff family of filamentous bacteriophage viruses. J Phys Chem B 115:15370–15379. https://doi.org/10.1021/jp2079742
Morag O, Sgourakis NG, Baker D, Goldbourt A (2015) The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc Natl Acad Sci USA 112:971–976. https://doi.org/10.1073/pnas.1415393112
Mou Y, Chen P-H, Lee H-W, Chan JCC (2007) Determination of chemical shift anisotropies of unresolved carbonyl sites by C-α detection under magic-angle spinning. J Magn Reson 187:352–356. https://doi.org/10.1016/j.jmr.2007.05.002
Nave C, Fowler AG, Malsey S, Marvin DA, Siegrist H, Wachtel EJ (1979) Macromolecular structural transitions in Pf1 filamentous bacterial virus. Nature 281:232–234. https://doi.org/10.1038/281232a0
Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR (2001) The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus. J Mol Biol 309:401–421. https://doi.org/10.1006/jmbi.2001.4685
Rakonjac J (2012) Filamentous bacteriophages: biology and applications. In: ELS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000777
Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382. https://doi.org/10.1093/bioinformatics/btl589
Schaefer J, Stejskal EO (1976) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc 98:1031–1032. https://doi.org/10.1021/ja00420a036
Schanda P, Ernst M (2016) Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. Prog Nucl Magn Reson Spectrosc 96:1–46. https://doi.org/10.1016/j.pnmrs.2016.02.001
Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor–NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62. https://doi.org/10.1016/j.pnmrs.2005.10.001
Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. https://doi.org/10.1007/s10858-009-9333-z
Shi X, Rienstra CM (2016) Site-specific internal motions in GB1 protein microcrystals revealed by 3D 2H–13C–13C solid-state NMR spectroscopy. J Am Chem Soc 138:4105–4119. https://doi.org/10.1021/jacs.5b12974
Stevens TJ, Fogh RH, Boucher W, Higman VA, Eisenmenger F, Bardiaux B, van Rossum B-J, Oschkinat H, Laue ED (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447. https://doi.org/10.1007/s10858-011-9569-2
Straus SK, Scott WRP, Symmons MF, Marvin DA (2008) On the structures of filamentous bacteriophage Ff (fd, f1, M13). Eur Biophys J 37:521–527. https://doi.org/10.1007/s00249-007-0222-7
Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637. https://doi.org/10.1016/S0009-2614(01)00791-6
Tsuboi M, Tsunoda M, Overman SA, Benevides JM, Thomas GJ (2010) A structural model for the single-stranded DNA genome of filamentous bacteriophage Pf1. Biochemistry 49:1737–1743. https://doi.org/10.1021/bi901323a
Wen ZQ, Overman SA, Thomas GJ (1997) Structure and interactions of the single-stranded DNA genome of filamentous virus fd: Investigation by ultraviolet resonance Raman spectroscopy. Biochemistry 36:7810–7820. https://doi.org/10.1021/bi970342q
Wylie BJ, Sperling LJ, Frericks HL, Shah GJ, Franks WT, Rienstra CM (2007) Chemical-shift anisotropy measurements of amide and carbonyl resonances in a microcrystalline protein with slow magic-angle spinning NMR spectroscopy. J Am Chem Soc 129(17):5318–5319. https://doi.org/10.1021/JA0701199
Wylie BJ, Sperling LJ, Nieuwkoop AJ, Franks WT, Oldfield E, Rienstra CM (2011) Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci USA 108:16974–16979. https://doi.org/10.1073/pnas.1103728108
Ye C, Fu R, Hu J, Hou L, Ding S (1993) Carbon-13 chemical shift anisotropies of solid amino acids. Magn Reson Chem 31:699–704. https://doi.org/10.1002/mrc.1260310802
Zhang H, Hou G, Lu M, Ahn J, Byeon IJL, Langmead CJ, Perilla JR, Hung I, Gor’Kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T (2016) HIV-1 capsid function is regulated by dynamics: quantitative atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD. J Am Chem Soc 138:14066–14075. https://doi.org/10.1021/jacs.6b08744