Rapamycin-Preactivated Autophagy Enhances Survival and Differentiation of Mesenchymal Stem Cells After Transplantation into Infarcted Myocardium

Stem Cell Reviews and Reports - Tập 16 Số 2 - Trang 344-356 - 2020
Zhihua Li1, Yongli Wang1, Haijie Wang1, Jin-Hong Wu1, Yaohong Tan1
1Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China

Tóm tắt

AbstractStem cell transplantation has been limited by poor survival of the engrafted cells in hostile microenvironment of the infarcted myocardium. This study investigated cytoprotective effect of rapamycin-preactivated autophagy on survival of the transplanted mesemchymal stem cells (MSCs). MSCs isolated from rat bone marrow were treated with 50 nmol/L rapamycin for 2 h, and then the cytoprotective effect of rapamycin was examined. After intramyocardial transplantation in rat ischemia/reperfusion models, the survival and differentiation of the rapamycin-pretreated calls were accessed. After treatment with rapamycin, autophagic activities and lysososme production of the cells were increased significantly. In the condition of short-term or long-term hypoxia and serum deprivation, the apoptotic cells in rapamycin-pretreated cells were less, and secretion of HGF, IGF-1, SCF, SDF-1 and VEGF was increased. After transplantation of rapamycin-pretreated cells, repair of the infarcted myocardium and restoration of cardial function were enhanced dramatically. Expression of HGF, IGF-1, SCF, SDF-1, VEGF, HIF-1α and IL-10 in the myocardium was upregulated, while expression of IL-1β and TNF-α was downregulated. Tracing of GFP and Sry gene showed that the survival of rapamycin-pretreated cells was increased. Cardiomyogenesis and angiogenesis in the infarcted myocardium were strengthened. Some rapamycin-pretreated cells differentiated into cardiomyocytes or endothelial cells. These results demonstrate that moderate preactivation of autophagy with rapamycin enhances the survival and differentiation of the transplanted MSCs. Rapamycin-primed MSCs can promote repair of the infarcted myocardium and improvement of cardiac function effectively.

Từ khóa


Tài liệu tham khảo

Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., & White, H. D. (2012). Third universal definition of myocardial infarction. Journal of the American College of Cardiology, 60, 1581–1598.

Anderson, J. L., & Morrow, D. A. (2017). Acute myocardial infarction. The New England Journal of Medicine, 376, 2053–2064.

Laflamme, M. A., & Murry, C. E. (2011). Heart regeneration. Nature, 473, 326–335.

Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps: observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47, 1777–1785.

Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heide, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.

Young, P. P., & Schafer, R. (2015). Cell-based therapies for cardiac disease: a cellular therapist's perspective. Transfusion, 55, 441–451.

Karantalis, V., & Hare, J. M. (2015). Use of mesenchymal stem cells for therapy of cardiac disease. Circulation Research, 116, 1413–1430.

Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M., Cheng, L., Palasis, M., & Wilensky, R. L. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27, 1114–1122.

Toma, C., Wagner, W. R., Schwartz, A., & Villanueva, F. (2009). Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circulation Research, 104, 398–402.

Amsalem, Y., Mardor, Y., Feinberg, M. S., Landa, N., Miller, L., Daniels, D., Ocherashvilli, A., Holbova, R., Yosef, O., Barbash, I. M., & Leor, J. (2007). Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 116, I38–I45.

Kim, J., Shapiro, L., & Flynn, A. (2015). The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacology and Therapeutics, 151(Suppl C), 8–15.

Kroemer, G., Marino, G., & Levine, B. (2010). Autophagy and the integrated stress response. Molecular Cell, 40, 280–293.

Choi, A. M. K., Ryter, S. W., & Levine, B. (2013). Mechanisms of disease: autophagy in human health and disease. The New England Journal of Medicine, 368, 651–662.

Ho, T. T., Warr, M. R., Adelman, E. R., Lansinger, O. M., Flach, J., Verovskaya, E. V., Figueroa, M. E., & Passegué, E. (2017). Autophagy maintains the metabolism and function of young and old stem cells. Nature, 543, 205–210.

Guan, J. L., Simon, A. K., Prescott, M., Menendez, J. A., Liu, F., Wang, F., Wang, C., Wolvetang, E., Vazquez-Martin, A., & Zhang, J. (2013). Autophagy in stem cells. Autophagy, 9, 830–849.

Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature, 529, 37–42.

Wang, H. J., Zhang, D., Tan, Y. Z., & Li, T. (2013). Autophagy in endothelial progenitor cells is cytoprotective in hypoxic conditions. American Journal of Physiology. Cell Physiology, 304, C617–C626.

Zhou, P., Tan, Y. Z., Wang, H. J., & Wang, G. D. (2017). Hypoxic preconditioning-induced autophagy enhances survival of engrafted endothelial progenitor cells in ischaemic limb. Journal of Cellular and Molecular Medicine, 21, 2452–2464.

Kim, Y. C., & Guan, K. L. (2015). mTOR: a pharmacologic target for autophagy regulation. The Journal of Clinical Investigation, 125, 25–32.

Huang, N. F., Sievers, R. E., Park, J. S., Fang, Q., Li, S., & Lee, R. J. (2006). A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction. Nature Protocols, 1, 1596–1609.

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., & Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19, 5720–5728.

Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., & Codogno, P. (2000). Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. The Journal of Biological Chemistry, 275, 992–998.

Calvillo, L., Latini, R., Kajstura, J., Leri, A., Anversa, P., Ghezzi, P., et al. (2003). Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proceedings of the National Academy of Sciences of the United States of America, 100, 4802–4806.

Olivetti, G., Capasso, J. M., Meggs, L. G., Sonnenblick, E. H., & Anversa, P. (1991). Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circulation Research, 68, 856–869.

Wang, Q. L., Wang, H. J., Li, Z. H., Wang, Y. L., Wu, X. P., & Tan, Y. Z. (2017). Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. Journal of Cellular and Molecular Medicine, 21, 1751–1766.

Karim, M. R., Kanazawa, T., Daigaku, Y., Fujimura, S., Miotto, G., & Kadowaki, M. (2007). Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy, 3, 553–560.

Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews. Drug Discovery, 10, 868–880.

Wang, Y. L., Zhang, G., Wang, H. J., Tan, Y. Z., & Wang, X. Y. (2018). Preinduction with bone morphogenetic protein-2 enhances cardiomyogenic differentiation of c-kit+ mesenchymal stem cells and repair of infarcted myocardium. International Journal of Cardiology, 265, 173–180.

Behfar, A., Crespo-Diaz, R., Terzic, A., & Gersh, B. J. (2014). Cell therapy for cardiac repair–lessons from clinical trials. Nature Reviews. Cardiology, 11, 232–246.

Bishu, K., Ogut, O., Kushwaha, S., Mohammed, S. F., Ohtani, T., Xu, X., et al. (2013). Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade. PLoS One, 8, e81325.

Zhang, Q., Yang, Y. J., Wang, H., Dong, Q. T., Wang, T. J., Qian, H. Y., & Xu, H. (2012). Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells and Development, 21, 1321–1332.

Yang, R., Ouyang, Y., Li, W., Wang, P., Deng, H., Song, B., Hou, J., Chen, Z., Xie, Z., Liu, Z., Li, J., Cen, S., Wu, Y., & Shen, H. (2016). Autophagy plays a protective role in tumor necrosis factor-α-induced apoptosis of bone marrow-derived mesenchymal stem cells. Stem Cells and Development, 25, 788–797.

Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences, 36, 30–38.

Oliver, L., Hue, E., Priault, M., & Vallette, F. M. (2012). Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells and Development, 21, 2779–2788.

Sotthibundhu, A., McDonagh, K., von Kriegsheim, A., Garcia-Munoz, A., Klawiter, A., Thompson, K., et al. (2016). Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Research & Therapy, 7, 166.

Kim, K. W., Moon, S. J., Park, M. J., Kim, B. M., Kim, E. K., Lee, S. H., et al. (2015). Optimization of adipose tissue-derived mesenchymal stem cells by rapamycin in a murine model of acute graft-versus-host disease. Stem Cell Research & Therapy, 6, 202.

Das, A., Salloum, F. N., Durrant, D., Ockaili, R., & Kukreja, R. C. (2012). Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. Journal of Molecular and Cellular Cardiology, 53, 858–869.

Khan, S., Salloum, F., Das, A., Xi, L., Vetrovec, G. W., & Kukreja, R. C. (2006). Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 41, 256–264.

Orogo, A. M., & Gustafsson, A. B. (2015). Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circulation Research, 116, 489–503.

Delbridge, L. M. D., Mellor, K. M., Taylor, D. J., & Gottlieb, R. A. (2017). Myocardial stress and autophagy: mechanisms and potential therapies. Nature Reviews. Cardiology, 14, 412–425.

Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493, 338–345.

Levine, B., Packer, M., & Codogno, P. (2015). Development of autophagy inducers in clinical medicine. The Journal of Clinical Investigation, 125, 14–24.

Hodgkinson, C. P., Bareja, A., Gomez, J. A., & Dzau, V. J. (2016). Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circulation Research, 118, 95–107.

Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., Noiseux, N., Zhang, L., Pratt, R. E., Ingwall, J. S., & Dzau, V. J. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11, 367–368.

Sanchez, C. G., Penfornis, P., Oskowitz, A. Z., Boonjindasup, A. G., Cai, D. Z., Dhule, S. S., Rowan, B. G., Kelekar, A., Krause, D. S., & Pochampally, R. R. (2011). Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis, 32, 964–972.

Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5, e002856.

Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine, 92, 387–397.