Randomised preconditioning for the forcing formulation of weak‐constraint 4D‐Var
Tóm tắt
Từ khóa
Tài liệu tham khảo
Butcher J.C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods
Daley R., 1993, Atmospheric Data Analysis
ECMWF(2020).Part II: Data Assimilation. No. 2 in IFS Documentation. European Centre for Medium Range Weather Forecasts. Available at.
Fisher M., 1998, Proceedings of the Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, 364
Lorenz E., 1996, Proceedings of the Seminar on Predictability, 1
Mogensen K. Alonso Balmaseda M.andWeaver A.(2012).The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Technical Memorandum. Reading UK: European Centre for Medium Range Weather Forecasts.
Morton K.W., 1994, Numerical Solution of Partial Differential Equations
Nakatsukasa Y.(2020). Fast and stable randomized low‐rank matrix approximation.
Nocedal J., 2006, Numerical Optimization
Rutishauser H., 1971, Handbook for Automatic Computation: Volume II: Linear Algebra. Die Grundlehren der mathematischen Wissenschaften, 284
Schnabel R.(1983).Quasi‐Newton methods using multiple secant equations. Technical Report CU‐CS‐247‐83 Boulder CO.
Tshimanga J.(2007).On a class of limited memory preconditioners for large‐scale nonlinear least‐squares problems (with application to variational ocean data assimilation). PhD Thesis Department of Mathematics University of Namur Belgium.