Randomised preconditioning for the forcing formulation of weak‐constraint 4D‐Var

Quarterly Journal of the Royal Meteorological Society - Tập 147 Số 740 - Trang 3719-3734 - 2021
Ieva Daužickaitė1, Amos S. Lawless2,1, J. A. Scott1,3, Peter Jan van Leeuwen4,1
1School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading, UK
2National Centre for Earth Observation, Reading, UK
3Scientific Computing Department, STFC Rutherford Appleton Laboratory, Didcot, UK
4Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Tóm tắt

AbstractThere is growing awareness that errors in the model equations cannot be ignored in data assimilation methods such as four‐dimensional variational assimilation (4D‐Var). If allowed for, more information can be extracted from observations, longer time windows are possible, and the minimisation process is easier, at least in principle. Weak‐constraint 4D‐Var estimates the model error and minimises a series of quadratic cost functions, which can be achieved using the conjugate gradient (CG) method; minimising each cost function is called an inner loop. CG needs preconditioning to improve its performance. In previous work, limited‐memory preconditioners (LMPs) have been constructed using approximations of the eigenvalues and eigenvectors of the Hessian in the previous inner loop. If the Hessian changes significantly in consecutive inner loops, the LMP may be of limited usefulness. To circumvent this, we propose using randomised methods for low‐rank eigenvalue decomposition and use these approximations to construct LMPs cheaply using information from the current inner loop. Three randomised methods are compared. Numerical experiments in idealized systems show that the resulting LMPs perform better than the existing LMPs. Using these methods may allow more efficient and robust implementations of incremental weak‐constraint 4D‐Var.

Từ khóa


Tài liệu tham khảo

10.1002/qj.3740

10.1002/qj.3209

Butcher J.C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods

Daley R., 1993, Atmospheric Data Analysis

10.1137/080731992

10.1145/152613.152614

ECMWF(2020).Part II: Data Assimilation. No. 2 in IFS Documentation. European Centre for Medium Range Weather Forecasts. Available at.

Fisher M., 1998, Proceedings of the Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, 364

10.1137/040617546

10.56021/9781421407944

10.1002/qj.3262

10.1137/050624935

10.1137/08074008

10.1137/130938700

10.1137/090771806

10.6028/jres.049.044

10.1256/qj.03.231

10.1017/CBO9780511802270

10.1002/qj.3373

10.1515/9783110282269.55

Lorenz E., 1996, Proceedings of the Seminar on Predictability, 1

10.1017/S0962492920000021

Mogensen K. Alonso Balmaseda M.andWeaver A.(2012).The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Technical Memorandum. Reading UK: European Centre for Medium Range Weather Forecasts.

10.1016/j.pocean.2011.05.004

Morton K.W., 1994, Numerical Solution of Partial Differential Equations

Nakatsukasa Y.(2020). Fast and stable randomized low‐rank matrix approximation.

Nocedal J., 2006, Numerical Optimization

10.1137/1.9781611971163

Rutishauser H., 1971, Handbook for Automatic Computation: Volume II: Linear Algebra. Die Grundlehren der mathematischen Wissenschaften, 284

10.1137/1.9780898718003

10.1137/1.9781611970739

Schnabel R.(1983).Quasi‐Newton methods using multiple secant equations. Technical Report CU‐CS‐247‐83 Boulder CO.

10.1137/1.9780898718058

10.1007/s10915-009-9272-6

10.1137/1.9780898719574

10.1256/qj.05.224

10.1002/qj.94

Tshimanga J.(2007).On a class of limited memory preconditioners for large‐scale nonlinear least‐squares problems (with application to variational ocean data assimilation). PhD Thesis Department of Mathematics University of Namur Belgium.

10.1002/qj.228