Random walk models in biology

Journal of the Royal Society Interface - Tập 5 Số 25 - Trang 813-834 - 2008
Edward A. Codling1, Michael J. Plank2, Simon Benhamou3
1Department of Mathematics, University of Essex, Colchester CO4 3SQ, UK
2Department of Mathematics and Statistics, University of CanterburyChristchurch 8140, New Zealand
3Behavioural Ecology Group, CEFE, CNRSMontpellier 34293, France

Tóm tắt

Mathematical modelling of the movement of animals, micro-organisms and cells is of great relevance in the fields of biology, ecology and medicine. Movement models can take many different forms, but the most widely used are based on the extensions of simple random walk processes. In this review paper, our aim is twofold: to introduce the mathematics behind random walks in a straightforward manner and to explain how such models can be used to aid our understanding of biological processes. We introduce the mathematical theory behind the simple random walk and explain how this relates to Brownian motion and diffusive processes in general. We demonstrate how these simple models can be extended to include drift and waiting times or be used to calculate first passage times. We discuss biased random walks and show how hyperbolic models can be used to generate correlated random walks. We cover two main applications of the random walk model. Firstly, we review models and results relating to the movement, dispersal and population redistribution of animals and micro-organisms. This includes direct calculation of mean squared displacement, mean dispersal distance, tortuosity measures, as well as possible limitations of these model approaches. Secondly, oriented movement and chemotaxis models are reviewed. General hyperbolic models based on the linear transport equation are introduced and we show how a reinforced random walk can be used to model movement where the individual changes its environment. We discuss the applications of these models in the context of cell migration leading to blood vessel growth (angiogenesis). Finally, we discuss how the various random walk models and approaches are related and the connections that underpin many of the key processes involved.

Từ khóa


Tài liệu tham khảo

10.1007/BF00275919

10.1006/bulm.1998.0042

Anderson A.R.A, 1997, Nematode movement along a chemical gradient in a structurally heterogeneous environment, Fund. Appl. Nematol, 20, 165

10.1080/10273660008833042

Batschelet E. 1981 Circular statistics in biology. London UK:Academic Press.

10.1006/anbe.1994.1189

10.1016/S0022-5193(03)00242-X

10.1016/j.jtbi.2004.03.016

10.1890/05-0495

10.1890/06-1769.1

10.1016/S0003-3472(89)80030-2

10.1016/S0003-3472(05)80097-1

10.1103/PhysRevE.74.020102

Berg H.C. 1983 Random walks in biology. Princeton NJ:Princeton University Press.

10.1016/S0304-3800(97)00153-1

10.1016/S0022-5193(88)80038-9

10.1080/14786442808674769

10.1890/0012-9658(2001)082[1680:CRWEOA]2.0.CO;2

10.1007/s11538-005-9028-x

Codling E. A. 2003 Biased random walks in biology. PhD thesis University of Leeds. See http://www.maths.leeds.ac.uk/applied/phd/codling.html.

10.1016/j.jtbi.2004.11.008

10.1007/s00285-005-0317-7

10.3354/meps279215

10.1890/06-0854.1

10.1038/nature06201

10.1007/s11538-007-9227-8

10.1038/nature03236

10.1007/BF01197845

Dunn G.A, 1983, Characterising a kinesis response: time averaged measures of cell speed and directional persistence, Agents Actions Suppl, 12, 14

10.1038/nature06199

10.1002/andp.19053220806

10.1002/andp.19063240208

Fisher N.I Lewis T& Embleton B.J.J. 1987 Statistics analysis of spherical data. Cambridge UK:Cambridge University Press.

Flory P.J. 1969 Statistical mechanics of chain molecules. Chichester UK:Wiley.

10.1093/qjmam/4.2.129

Grimmett G& Stirzaker D. 2001 Probability and random process. Oxford UK:Oxford University Press.

10.1038/1401064a0

10.1007/BF00275081

10.1063/1.477304

10.1006/jtbi.1997.0421

10.1016/j.fluiddyn.2005.03.002

10.1007/s002850050042

10.1142/S0218202502002008

10.1137/S0036139999358167

10.1016/0167-2789(95)00075-F

Iyengar S, 2000, Statistics for the 21st century, 233

James A. & Plank M. J. 2007 On fitting power laws to ecological data. E-print. (http://arxiv.org/abs/0712.0613v1).

10.1016/0376-6357(87)90035-0

10.1216/RMJ-1974-4-3-497

10.1007/BF00379695

10.1073/pnas.0307052101

10.1016/0022-5193(71)90051-8

10.1017/S0022112086001131

10.1137/S0036139995291106

10.1006/bulm.2001.0240

Lin C.C& Segel L.A. 1974 Mathematics applied to deterministic problems in the natural sciences. New York NY:Macmillan.

10.1016/0022-5193(75)90094-6

Mardia K.V& Jupp P.E. 1999 Directional statistics. Chichester UK:Wiley.

10.1016/S0022-5193(88)80028-6

10.2307/1937543

10.1016/j.jtbi.2005.12.022

Montroll E.W, 1984, Nonequilibrium phenomena II: from stochastics to hydrodynamics, 1

Morse P.M& Feshbach H. 1953 Methods of theoretical physics. New York NY:McGraw-Hill.

10.1016/j.jtbi.2006.07.029

Murray J.D. 1993 Mathematical biology. Berlin Germany:Springer.

10.1007/BF02059856

10.1007/s00442-004-1804-z

10.1016/0022-5193(74)90101-5

Okubo A& Levin S.A. 2001 Diffusion and ecological problems: modern perspectives. Berlin Germany:Springer.

10.1137/S0036139900382772

10.1137/S0036139995288976

10.1007/BF00277392

10.2307/1543482

10.1007/BF02476407

10.1038/072294b0

10.1006/bulm.2001.0230

10.1111/j.1365-2419.2004.00299.x

Plank M. J. 2003 Cell-based models of tumour angiogenesis. PhD thesis University of Leeds. See http://www.math.canterbury.ac.nz/∼m.plank/thesis.html.

Plank M. J. & James A. In press. Optimal forgaing: Lévy pattern or process? J. R. Soc. Interface . (doi:10.1098/rsif.2008.0006).

10.1093/imammb/20.2.135

10.1016/j.bulm.2004.04.001

10.1016/j.jtbi.2004.04.012

10.1007/BF00176379

10.1038/072318a0

Shlesinger M.F, 2003, Processes with long-range correlations, 139, 10.1007/3-540-44832-2_7

10.1016/S0065-2504(08)60259-7

Skellam J.G, 1973, The mathematical theory of the dynamics of biological populations, 63

10.1016/S0895-7177(02)00129-2

Smoluchowski M, 1916, Drei vortrage uber diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Phys. Zeit, 17, 557

10.1006/jmaa.2001.7725

Taylor G.I, 1921, Diffusion by continuous movements, Proc. Lond. Math. Soc, 20, 196

10.1063/1.1700381

Turchin P. 1998 Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sunderland MA:Sinauer Associates.

10.1098/rstb.1952.0012

10.1103/PhysRev.36.823

10.1016/j.jtbi.2007.03.026

10.1038/381413a0

10.1016/S0378-4371(00)00071-6

10.1016/j.ecolmodel.2005.04.017

10.1016/0167-2789(96)00082-6

Weiss G.H. 1994 Aspects and applications of the random walk. Amsterdam The Netherlands:North Holland Press.

10.1016/S0304-3800(00)00309-4