Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$

Springer Science and Business Media LLC - Tập 33 Số 4 - Trang 2233-2257 - 2020
Endre Csáki1, Antónia Földes2
1Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
2Department of Mathematics, College of Staten Island, CUNY, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arkhincheev, V.E.: Anomalous diffusion and charge relaxation on comb model: exact solutions. Physica A 280, 304–314 (2000)

Arkhincheev, V.E.: Random walks on the comb model and its generalizations. Chaos 17, 043102–7 (2007)

Arkhincheev, V.E.: Unified continuum description for sub-diffusion random walks on multi-dimensional comb model. Physica A 389, 1–6 (2010)

Bass, F., Griffin, P.S.: The most visited site of Brownian motion and simple random walk. Z. Wahrsch. verv. Gebiete 70, 417–436 (1985)

Bertacchi, D.: Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11, 1184–1203 (2006)

Bertacchi, D., Zucca, F.: Uniform asymptotic estimates of transition probabilities on combs. J. Aust. Math. Soc. 75, 325–353 (2003)

Bertoin, J.: Iterated Brownian motion and stable (1/4) subordinator. Statist. Probab. Lett. 27, 111–114 (1996)

Cassi, D., Regina, S.: Random walks on $$d$$-dimensional comb lattices. Modern Phys. Lett. B 6, 1397–1403 (1992)

Chung, K.L.: On the maximum partial sums of sequences of independent random variables. Trans. Am. Math. Soc. 64, 205–233 (1948)

Csáki, E., Csörgő, M., Földes, A., Révész, P.: How big are the increments of the local time of a Wiener process? Ann. Probab. 11, 593–608 (1983)

Csáki, E., Csörgő, M., Földes, A., Révész, P.: Global Strassen-type theorems for iterated Brownian motions. Stoch. Process. Appl. 59, 321–341 (1995)

Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for a simple random walk on the 2-dimensional comb. Electron. J. Probab. 14, 2371–2390 (2009)

Csáki, E., Csörgő, M., Földes, A., Révész, P.: On the local time of random walk on the 2-dimensional comb. Stoch. Process. Appl. 121, 1290–1314 (2011)

Csáki, E., Csörgő, M., Földes, A., Révész, P.: Random walk on half-plane half-comb structure. Ann. Math. Inform. 39, 29–44 (2012)

Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for anisotropic random walks on $$Z^2$$. Periodica Math. Hung. 67, 71–94 (2013)

Csáki, E., Földes, A.: A note on the stability of the local time of the Wiener process. Stoch. Process. Appl. 25, 203–213 (1987)

Csáki, E., Földes, A., Révész, P.: Some results and problems for anisotropic random walk on the plane. Asymptotic Laws and Methods in Stochastics. In: A Volume in Honour of Miklós Csörgő Fields Institute Communication, vol. 76, pp. 55–76 (2015)

Csáki, E., Grill, K.: On the large values of the Wiener process. Stoch. Process. Appl. 27, 43–56 (1988)

Csáki, E., Révész, P.: Strong invariance for local time. Z. Wahrsch. verw. Gebiete 50, 5–25 (1983)

Csörgő, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probab. 7, 731–737 (1979)

Dean, D.D., Jansons, K.M.: Brownian excursions on combs. J. Stat. Phys. 70, 1313–1332 (1993)

Durhuus, B., Jonsson, T., Wheater, J.F.: Random walks on combs. J. Phys. A 39, 1009–1037 (2006)

Dvoretzky, A., Erdős, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium, pp. 353–367 (1951)

Erdős, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hung. 11, 137–162 (1960)

Heyde, C.C.: On the asymptotic behaviour of random walks on an anisotropic lattice. J. Stat. Phys. 27, 721–730 (1982)

Heyde, C.C.: Asymptotics for two-dimensional anisotropic random walks. In: Stochastic Processes, pp. 125–130. Springer, New York (1993)

Heyde, C.C., Westcott, M., Williams, E.R.: The asymptotic behavior of a random walk on a dual-medium lattice. J. Stat. Phys. 28, 375–380 (1982)

Hirsch, W.M.: A strong law for the maximum cumulative sum of independent random variables. Commun. Pure Appl. Math. 18, 109–127 (1965)

Iomin, A., Méndez, V., Horsthemke, W.: Fractional Dynamics in Comb-like Structures. World Scientific, Singapore (2018)

Keilson, J., Wellner, J.A.: Oscillating Brownian motion. J. Appl. Probab. 15, 300–310 (1978)

Kesten, H.: An iterated logarithm law for the local time. Duke Math. J. 32, 447–456 (1965)

Klass, M.: Toward a universal law of the iterated logarithm. I. Z. Wahrsch. verw. Gebiete 36, 165–178 (1976)

Nane, E.: Laws of the iterated logarithm for a class of iterated processes. Stat. Probab. Lett. 79, 1744–1751 (2009)

Révész, P.: Local time and invariance. Lecture Notes in Math., vol. 861, pp. 128–145. Springer, New York (1981)

Révész, P.: Random Walk in Random and Non-Random Environments, 3rd edn. World Scientific, Singapore (2013)

Reynolds, A.M.: On anomalous transport on comb structures. Physica A 334, 39–45 (2004)

Seshadri, V., Lindenberg, K., Shuler, K.E.: Random walks on periodic and random lattices. II. Random walk properties via generating function techniques. J. Stat. Phys. 21, 517–548 (1979)

Shuler, K.E.: Random walks on sparsely periodic and random lattices I. Physica A 95, 12–34 (1979)

Silver, H., Shuler, K.E., Lindenberg, K.: Two-dimensional anisotropic random walks. In: Statistical Mechanics and Statistical Methods in Theory and Application (Proc. Sympos., Univ. Rochester, Rochester, N.Y., 1976), pp. 463–505. Plenum, New York (1977)

Tóth, B.: No more than three favorite sites for simple random walk. Ann. Probab. 29, 484–503 (2001)

Weiss, G.H., Havlin, S.: Some properties of a random walk on a comb structure. Physica A 134, 474–482 (1986)

Westcott, M.: Random walks on a lattice. J. Stat. Phys. 27, 75–82 (1982)

Zahran, Z.A.: 1/2-order fractional Fokker–Planck equation on comblike model. J. Stat. Phys. 109, 1005–1016 (2002)

Zahran, M.A., Abulwafa, E.M., Elwakil, S.A.: The fractional Fokker–Planck equation on comb-like model. Physica A 323, 237–248 (2003)