Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arkhincheev, V.E.: Anomalous diffusion and charge relaxation on comb model: exact solutions. Physica A 280, 304–314 (2000)
Arkhincheev, V.E.: Random walks on the comb model and its generalizations. Chaos 17, 043102–7 (2007)
Arkhincheev, V.E.: Unified continuum description for sub-diffusion random walks on multi-dimensional comb model. Physica A 389, 1–6 (2010)
Bass, F., Griffin, P.S.: The most visited site of Brownian motion and simple random walk. Z. Wahrsch. verv. Gebiete 70, 417–436 (1985)
Bertacchi, D.: Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11, 1184–1203 (2006)
Bertacchi, D., Zucca, F.: Uniform asymptotic estimates of transition probabilities on combs. J. Aust. Math. Soc. 75, 325–353 (2003)
Bertoin, J.: Iterated Brownian motion and stable (1/4) subordinator. Statist. Probab. Lett. 27, 111–114 (1996)
Cassi, D., Regina, S.: Random walks on $$d$$-dimensional comb lattices. Modern Phys. Lett. B 6, 1397–1403 (1992)
Chung, K.L.: On the maximum partial sums of sequences of independent random variables. Trans. Am. Math. Soc. 64, 205–233 (1948)
Csáki, E., Csörgő, M., Földes, A., Révész, P.: How big are the increments of the local time of a Wiener process? Ann. Probab. 11, 593–608 (1983)
Csáki, E., Csörgő, M., Földes, A., Révész, P.: Global Strassen-type theorems for iterated Brownian motions. Stoch. Process. Appl. 59, 321–341 (1995)
Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for a simple random walk on the 2-dimensional comb. Electron. J. Probab. 14, 2371–2390 (2009)
Csáki, E., Csörgő, M., Földes, A., Révész, P.: On the local time of random walk on the 2-dimensional comb. Stoch. Process. Appl. 121, 1290–1314 (2011)
Csáki, E., Csörgő, M., Földes, A., Révész, P.: Random walk on half-plane half-comb structure. Ann. Math. Inform. 39, 29–44 (2012)
Csáki, E., Csörgő, M., Földes, A., Révész, P.: Strong limit theorems for anisotropic random walks on $$Z^2$$. Periodica Math. Hung. 67, 71–94 (2013)
Csáki, E., Földes, A.: A note on the stability of the local time of the Wiener process. Stoch. Process. Appl. 25, 203–213 (1987)
Csáki, E., Földes, A., Révész, P.: Some results and problems for anisotropic random walk on the plane. Asymptotic Laws and Methods in Stochastics. In: A Volume in Honour of Miklós Csörgő Fields Institute Communication, vol. 76, pp. 55–76 (2015)
Csáki, E., Grill, K.: On the large values of the Wiener process. Stoch. Process. Appl. 27, 43–56 (1988)
Csáki, E., Révész, P.: Strong invariance for local time. Z. Wahrsch. verw. Gebiete 50, 5–25 (1983)
Csörgő, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probab. 7, 731–737 (1979)
Dvoretzky, A., Erdős, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium, pp. 353–367 (1951)
Erdős, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hung. 11, 137–162 (1960)
Heyde, C.C.: On the asymptotic behaviour of random walks on an anisotropic lattice. J. Stat. Phys. 27, 721–730 (1982)
Heyde, C.C.: Asymptotics for two-dimensional anisotropic random walks. In: Stochastic Processes, pp. 125–130. Springer, New York (1993)
Heyde, C.C., Westcott, M., Williams, E.R.: The asymptotic behavior of a random walk on a dual-medium lattice. J. Stat. Phys. 28, 375–380 (1982)
Hirsch, W.M.: A strong law for the maximum cumulative sum of independent random variables. Commun. Pure Appl. Math. 18, 109–127 (1965)
Iomin, A., Méndez, V., Horsthemke, W.: Fractional Dynamics in Comb-like Structures. World Scientific, Singapore (2018)
Klass, M.: Toward a universal law of the iterated logarithm. I. Z. Wahrsch. verw. Gebiete 36, 165–178 (1976)
Nane, E.: Laws of the iterated logarithm for a class of iterated processes. Stat. Probab. Lett. 79, 1744–1751 (2009)
Révész, P.: Local time and invariance. Lecture Notes in Math., vol. 861, pp. 128–145. Springer, New York (1981)
Révész, P.: Random Walk in Random and Non-Random Environments, 3rd edn. World Scientific, Singapore (2013)
Seshadri, V., Lindenberg, K., Shuler, K.E.: Random walks on periodic and random lattices. II. Random walk properties via generating function techniques. J. Stat. Phys. 21, 517–548 (1979)
Silver, H., Shuler, K.E., Lindenberg, K.: Two-dimensional anisotropic random walks. In: Statistical Mechanics and Statistical Methods in Theory and Application (Proc. Sympos., Univ. Rochester, Rochester, N.Y., 1976), pp. 463–505. Plenum, New York (1977)
Weiss, G.H., Havlin, S.: Some properties of a random walk on a comb structure. Physica A 134, 474–482 (1986)
Zahran, Z.A.: 1/2-order fractional Fokker–Planck equation on comblike model. J. Stat. Phys. 109, 1005–1016 (2002)