Random Birth-and-Death Networks
Tóm tắt
In this paper, a baseline model termed as random birth-and-death network (RBDN) model is considered, in which at each time step, a new node is added into the network with probability p (
$$0
Tài liệu tham khảo
Barábasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)
Adamic, L.A., Huberman, B.A., Barabasi, A.L., Albert, R., Jeong, H., Bianconi, G.: Power-law distribution of the world wide web. Science 287, 2115a (2000)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature (London) 393, 440 (1998)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003)
Newman, M.E.: Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)
Newman, M.E.: Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)
Guimerà, R., Arenas, A., Díaz-Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66, 026704 (2002)
Onuttom, N., Iraj, S.: Scaling of load in communications networks. Phys. Rev. E 82, 036102 (2010)
Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature (London) 404, 180 (2000)
Barbosa, L.A., Silva, A.C., Silva, J.K.L.: Scaling relations in food webs. Phys. Rev. E 73, 041903 (2006)
Otto, S.B., Rall, B.C., Brose, U.: Allometric degree distributions facilitate food-web stability. Nature (London) 450, 1226 (2007)
Holme, P., Saramäi, J.: Temporal networks. Phys. Rep. 519, 97 (2012)
Posfai, M., Hovel, P.: Structural controllability of temporal networks. N. J. Phys. 16, 123055 (2014)
Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and aging in social temporal networks. Phys. Rev. Lett. 114(10), 108701 (2015)
Dorogovtsev, S.N., Mendes, J.F.F.: Scaling properties of scale-free evolving networks: continuous approach. Phys. Rev. E 63, 056125 (2001)
Moreno, Y., Gómez, J.B., Pacheco, A.F.: Instability of scale-free networks under node-breaking avalanches. Europhys. Lett. 58, 630 (2002)
Sarshar, N., Roychowdhury, V.: Scale-free and stable structures in complex ad hoc networks. Phys. Rev. E 69, 026101 (2004)
Slater, J.L., Hughes, B.D., Landman, K.A.: Evolving mortal networks. Phys. Rev. E 73, 066111 (2006)
Moore, C., Ghoshal, G., Newman, M.E.J.: Exact solutions for models of evolving networks with addition and deletion of nodes. Phys. Rev. E 74, 036121 (2006)
Farid, N., Christensen, K.: Evolving networks through deletion and duplication. N. J. Phys. 8, 212 (2006)
Saldaña, J.: Continuum formalism for modeling growing networks with deletion of nodes. Phys. Rev. E 75, 027102 (2007)
Ben-Naim, E., Krapivsky, P.L.: Addition-deletion networks. J. Phys. A 40, 8607 (2007)
Garcia-Domingo, J.L., Juher, D., Saldaña, J.: Degree correlations in growing networks with deletion of nodes. Phys. D 237, 640 (2008)
Cai, K.-Y., Dong, Z., Liu, K., Wu, X.-Y.: Phase transition on the degree sequence of a random graph process with vertex copying and deletion. Stoch. Process. Appl. 121, 885 (2011)
Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Elsevier, New York (2007)
Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A 272, 173 (1999)
Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629 (2000)
Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633 (2000)
Dorogovtsev, S.N.: Renormalization group for evolving networks. Phys. Rev. E 67, 045102R (2003)
Krapivsky, P.L., Redner, S.: Finiteness and fluctuations in growing networks. J. Phys. A 35, 9517 (2002)
Shi, D.H., Chen, Q.H., Liu, L.M.: Markov chain-based numerical method for degree distributions of growing networks. Phys. Rev. E 71, 036140 (2005)
Zhang, X.J., He, Z.S., He, Z., Lez, R.B.: SPR-based Markov chain method for degree distribution of evolving networks. Phys. A 391, 3350 (2012)
Barrat, A., Weigt, M.: On the properties of small-world network models. Eur. Phys. J. B 13, 547 (2000)