Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control

Surface and Interface Analysis - Tập 31 Số 10 - Trang 987-999 - 2001
Martin Kuball1
1H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL,#N#UK

Tóm tắt

AbstractThe use of micro‐Raman spectroscopy to monitor non‐invasively GaN, AlGaN and AlN material parameters for process and growth monitoring/control is demonstrated. Concepts to determine the crystalline quality, the stress, the free carrier concentration, the aluminium composition and the temperature from the Raman modes are reviewed. Raman monitoring of processing and growth is illustrated on selected examples: the high‐temperature processing of ion‐implanted and non‐implanted GaN layers, the Raman monitoring of AlGaN/GaN heterostructure field‐effect transistors and the in situ Raman monitoring of GaN growth at elevated temperatures. Ultraviolet Raman spectroscopy has been employed to characterize material properties of GaN surface layers and GaN/AlGaN interfaces. Raman mapping is illustrated on bulk AlN crystals to investigate stress fields related to growth striations and defects. Copyright © 2001 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1063/1.122246

Wu YF, 1999, IEICE Trans. Electron., 82, 1895

10.1109/55.772364

10.1063/1.120688

10.1063/1.118925

10.1063/1.120607

10.1063/1.124150

10.1143/JJAP.31.2883

10.1143/JJAP.28.L2112

10.1143/JJAP.31.L139

Ponce FA, 1997, GaN and Related Materials, Optoelectronic Properties of Semiconductors and Superlattices, 141

10.1002/(SICI)1521-396X(199911)176:1<535::AID-PSSA535>3.0.CO;2-I

Grzegory I, 1998, Mater. Res. Soc. Symp. Proc., 15, 482

Schowalter LJ, 1999, MRS Internet J. Nitride Semicond. Res., 4, G3.76, 10.1557/S1092578300002817

10.4028/www.scientific.net/MSF.338-342.1599

10.1143/JJAP.39.L710

10.1007/978-3-662-03313-5

10.1063/1.372248

10.1063/1.120191

10.1063/1.366309

10.1557/JMR.1998.0348

10.1063/1.123141

10.1063/1.118413

10.1016/S0040-6090(99)00908-6

10.1080/00018736400101051

10.1103/PhysRevB.55.7000

10.1016/0038-1098(95)00561-7

10.1063/1.123289

10.1016/0038-1098(96)00410-3

10.1103/PhysRevB.54.17745

10.1103/PhysRevB.58.12899

10.1063/1.122993

10.1063/1.361236

10.1063/1.356492

10.1063/1.114446

10.4028/www.scientific.net/MSF.264-268.1363

10.1007/3-540-11942-6_20

10.1063/1.360174

10.1103/PhysRevB.7.743

10.1103/PhysRevB.6.2380

10.1557/PROC-449-567

10.1016/S0038-1098(98)00093-3

10.1063/1.117547

10.1063/1.122348

10.1063/1.124701

10.1557/S1092578300001666

10.1557/S1092578300001691

10.1063/1.119367

Demangeot F, 1998, MRS Internet J. Nitride Semicond. Res., 3, 52, 10.1557/S1092578300001241

10.1002/(SICI)1521-3951(199911)216:1<793::AID-PSSB793>3.0.CO;2-X

10.1063/1.126161

10.1116/1.589426

10.1364/AO.28.004017

10.1103/PhysRevB.12.1172

10.1063/1.119254

10.1063/1.121030

Kuball M, 2000, MRS Internet J. Nitride Semicond. Res., 5, W11.46

Suski T, 1998, Mater. Res. Soc. Symp. Proc., 492, 949

10.1063/1.122052

10.1063/1.124928

Mohney SE, 1999, GaN and Related Semiconductors, 491

10.1063/1.351848

10.1063/1.371392

10.1007/s11664-999-0024-z

10.1002/(SICI)1521-396X(199911)176:1<759::AID-PSSA759>3.0.CO;2-N

10.1063/1.124214

Kuball M, 2000, MRS Internet J. Nitride Semicond. Res., 5, W12.3

10.1063/1.124810

Monberg E, 1994, 53

10.1016/0022-0248(96)00043-7

10.1002/1521-3951(199707)202:1<137::AID-PSSB137>3.0.CO;2-Y

10.1002/1521-396X(199707)162:1<251::AID-PSSA251>3.0.CO;2-7

10.1063/1.369712