Raindrop Size Distribution in a Midlatitude Continental Squall Line Measured by Thies Optical Disdrometers over East China

Journal of Applied Meteorology and Climatology - Tập 55 Số 3 - Trang 621-634 - 2016
Baojun Chen1, Jun Wang2, Dianli Gong2
1Key Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, China
2Weather Modification Office of Shandong Province, Jinan, China

Tóm tắt

AbstractDisdrometer data measured by ground-based optical disdrometers during a midlatitude continental squall line event on 18 August 2012 in Shandong Province, eastern China, are analyzed to study characteristics of raindrop size distribution (DSD). Four disdrometers simultaneously performed continuous measurements during the passage of the convective line. The convective line was partitioned into three regions: the convective center, leading edge, and trailing edge. Results show distinct differences in DSDs and integral rainfall parameters between the convective-center and the edge regions. The convective center has higher drop concentrations, larger mean diameters, and wider size distributions when compared with the edge regions. The leading and trailing edges have similar drop concentrations, but the latter has larger mean diameters and wider size distributions. The shape of DSD for the convective center is convex down, whereas it is convex upward in tropical continental squall lines, as reported in the literature. There is also spatial variability of the DSD and its integral rainfall parameters in the along-convective-line direction.

Từ khóa


Tài liệu tham khảo

Atlas, 1973, Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys. Space Phys., 11, 1, 10.1029/RG011i001p00001

Bloemink, 2005

Brandes, 2003, An evaluation of a drop distribution–based rainfall estimator, J. Appl. Meteor., 42, 652, 10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2

Brawn, 2008, On the measurement of atmospheric gamma drop-size distributions, Atmos. Sci. Lett., 9, 245, 10.1002/asl.198

Bringi, 2003, Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis, J. Atmos. Sci., 60, 354, 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2

Chang, 2009, Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar, J. Atmos. Oceanic Technol., 26, 1973, 10.1175/2009JTECHA1236.1

Chen, 2013, Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China, J. Meteor. Soc. Japan, 91, 215, 10.2151/jmsj.2013-208

Chu, 2008, An investigation of the slope-shape relation for gamma raindrop size distribution, J. Appl. Meteor. Climatol., 47, 2531, 10.1175/2008JAMC1755.1

Fernández-Raga, 2010, The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion, Atmos. Res., 96, 225, 10.1016/j.atmosres.2009.07.013

Frasson, 2011, Assessment of the Thies optical disdrometer performance, Atmos. Res., 101, 237, 10.1016/j.atmosres.2011.02.014

Friedrich, 2013, Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall, J. Atmos. Oceanic Technol., 30, 2063, 10.1175/JTECH-D-12-00254.1

Glickman, 2000

Jaffrain, 2012, Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers, J. Appl. Meteor. Climatol, 51, 941, 10.1175/JAMC-D-11-0136.1

Jameson, 2015, Disdrometer network observations of finescale spatial–temporal clustering in rain, J. Atmos. Sci., 72, 1648, 10.1175/JAS-D-14-0136.1

Jameson, 2015, On the variability of drop size distributions over areas, J. Atmos. Sci., 72, 1386, 10.1175/JAS-D-14-0258.1

Joss, 1967, Ein Spektrograph für Niederschlagestrophen mit automatisher Auswerting (A spectrograph for rain drops with automatic analysis), Pure Appl. Geophys., 68, 240, 10.1007/BF00874898

Jung, 2012, Microphysical properties of maritime squall line observed on June 2, 2008 in Taiwan, J. Meteor. Soc. Japan, 90, 833, 10.2151/jmsj.2012-516

Kumar, 2011, Two-parameter gamma drop size distribution models for Singapore, IEEE Trans. Geosci. Remote Sens., 49, 3371, 10.1109/TGRS.2011.2124464

Lanzinger, 2006

Maki, 2001, Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia, J. Appl. Meteor., 40, 1393, 10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2

Marzano, 2010, Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data, Atmos. Res., 97, 583, 10.1016/j.atmosres.2010.03.019

May, 2011, Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms?, J. Atmos. Sci., 68, 1902, 10.1175/2011JAS3617.1

Meng, 2013, General features of squall lines in east China, Mon. Wea. Rev., 141, 1629, 10.1175/MWR-D-12-00208.1

Moumouni, 2008, Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers, Geophys. Res. Lett., 35, L23807, 10.1029/2008GL035755

Nzeukou, 2004, Raindrop size distribution and radar parameters at Cape Verde, J. Appl. Meteor., 43, 90, 10.1175/1520-0450(2004)043<0090:RSDARP>2.0.CO;2

Parker, 2000, Organizational modes of midlatitude mesoscale convective systems, Mon. Wea. Rev., 128, 3413, 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2

Sarkar, 2015, Assessment of different raindrop size measuring techniques: Inter-comparison of Doppler radar, impact and optical disdrometer, Atmos. Res., 160, 15, 10.1016/j.atmosres.2015.03.001

Sharma, 2009, Characteristics of rain integral parameters during tropical convective, transition, and stratiform rain at Gadanki and its application in rain retrieval, J. Appl. Meteor. Climatol., 48, 1245, 10.1175/2008JAMC1948.1

Streets, 2008, Aerosol trends over China, 1980–2000, Atmos. Res., 88, 174, 10.1016/j.atmosres.2007.10.016

Testud, 2001, The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing, J. Appl. Meteor., 40, 1118, 10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2

Thies Clima, 2007

Thurai, 2010, CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia, J. Atmos. Oceanic Technol., 27, 932, 10.1175/2010JTECHA1349.1

Tokay, 2010, An experimental study of small-scale variability of raindrop size distribution, J. Appl. Meteor. Climatol., 49, 2348, 10.1175/2010JAMC2269.1

Tokay, 2001, Comparison of drop size distribution measurements by impact and optical disdrometers, J. Appl. Meteor., 40, 2083, 10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2

Uijlenhoet, 2003, Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation, J. Hydrometeor., 4, 43, 10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2

Ulbrich, 1983, Natural variations in the analytical form of the raindrop size distribution, J. Climate Appl. Meteor., 22, 1764, 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2

Ulbrich, 1998, Rainfall microphysics and radar properties: Analysis methods for drop size spectra, J. Appl. Meteor., 37, 912, 10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2

Ulbrich, 2007, Microphysics of raindrop size spectra: Tropical continental and maritime storms, J. Appl. Meteor. Climatol., 46, 1777, 10.1175/2007JAMC1649.1

Vivekanandan, 2004, Polarimetric radar estimators based on a constrained gamma drop size distribution model, J. Appl. Meteor., 43, 217, 10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2

Yuter, 2006, Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow, J. Appl. Meteor., 45, 1450, 10.1175/JAM2406.1

Zhang, 2003, The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information?, J. Atmos. Oceanic Technol., 20, 1106, 10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2