Radioresistance in Glioblastoma and the Development of Radiosensitizers
Tóm tắt
Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.
Từ khóa
Tài liệu tham khảo
Kohler, 2011, Annual Report to the Nation on the Status of Cancer, 1975-2007, Featuring Tumors of the Brain and Other Nervous System, J. Natl. Cancer Inst., 103, 714, 10.1093/jnci/djr077
Davis, 2016, Glioblastoma: Overview of Disease and Treatment, Clin. J. Oncol. Nurs., 20, S2, 10.1188/16.CJON.S1.2-8
Stupp, 2005, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352, 987, 10.1056/NEJMoa043330
Gilbert, 2014, A randomized trial of bevacizumab for newly diagnosed glioblastoma, N. Engl. J. Med., 370, 699, 10.1056/NEJMoa1308573
Gilbert, 2013, Dose-Dense Temozolomide for Newly Diagnosed Glioblastoma: A Randomized Phase III Clinical Trial, J. Clin. Oncol., 31, 4085, 10.1200/JCO.2013.49.6968
Chinot, 2014, Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma, N. Engl. J. Med., 370, 709, 10.1056/NEJMoa1308345
Mandel, 2017, Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma, Neuro Oncol., 20, 113, 10.1093/neuonc/nox144
Stupp, 2015, Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma, JAMA, 314, 2535, 10.1001/jama.2015.16669
Westphal, 2015, A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma, Eur. J. Cancer, 51, 522, 10.1016/j.ejca.2014.12.019
Stupp, 2014, Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial, Lancet Oncol., 15, 1100, 10.1016/S1470-2045(14)70379-1
Pfahler, 1904, Cerebral skiagraphy: transactions of the American Roentgen Ray Society—5th Annual Meeting, Am. J. Roentgenol. Radium. Ther. Nucl. Med., 4, 174
Forestier, 1928, Actual Technic of Examination of the Spinal Cavities with Lipiodol 1, Radiol., 11, 481, 10.1148/11.6.481
Scott, 1951, Developments in cerebral angiography with rapid serialized X-ray exposures on roll film 9 1/2 inches wide, Radiology, 56, 15, 10.1148/56.1.15
Hoeffner, 2011, Neuroradiology Back to the Future: Brain Imaging, Am. J. Neuroradiol., 33, 5, 10.3174/ajnr.A2936
Seaman, 1954, Localization of Intracranial Neoplasms with Radioactive Isotopes, Radiology, 62, 30, 10.1148/62.1.30
New, 1974, Computerized Axial Tomography with the EMI Scanner, Radiology, 110, 109, 10.1148/110.1.109
Baker, 1980, National Cancer Institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms. I. Overall results, Radiology, 136, 91, 10.1148/radiology.136.1.7384529
Potts, 1980, National Cancer Institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms. III. Metastatic tumors, Radiology, 136, 657, 10.1148/radiology.136.3.7403544
New, 1980, National Cancer Institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms. IV. Meningiomas, Radiology, 136, 665, 10.1148/radiology.136.3.7403545
Araki, 1984, Magnetic resonance imaging of brain tumors: measurement of T1. Work in progress, Radiology, 150, 95, 10.1148/radiology.150.1.6689793
Castillo, 2014, History and Evolution of Brain Tumor Imaging: Insights through Radiology, Radiology, 273, 111, 10.1148/radiol.14140130
Ostrom, 2015, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012, Neuro Oncol., 17, iv1, 10.1093/neuonc/nov189
Whelan, 1988, Comparison of CT and MRI brain tumor imaging using a canine glioma model, Pediatr. Neurol., 4, 279, 10.1016/0887-8994(88)90066-5
Alexander, 2007, Diffusion tensor imaging of the brain, Neurotherapeutics, 4, 316, 10.1016/j.nurt.2007.05.011
Yanagihara, T.K., and Wang, T. (2014). Diffusion-weighted imaging of the brain for glioblastoma: Implications for radiation oncology. Appl. Radiat. Oncol., 5–13.
Schmainda, 2012, Diffusion-weighted MRI as a biomarker for treatment response in glioma, CNS Oncol., 1, 169, 10.2217/cns.12.25
Guo, 2002, Lymphomas and High-Grade Astrocytomas: Comparison of Water Diffusibility and Histologic Characteristics, Radiology, 224, 177, 10.1148/radiol.2241010637
Kono, 2001, The role of diffusion-weighted imaging in patients with brain tumors, Am. J. Neuroradiol., 22, 1081
Gerstner, 2014, Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma, Cancer Res., 74, 4622, 10.1158/0008-5472.CAN-14-0383
Smits, 2018, Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques, J. Magn. Reson. Imaging, 49, 11
Stevenson, 2000, Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis, J. Neurol. Sci., 178, 81, 10.1016/S0022-510X(00)00339-7
2005, Principles of cerebral perfusion imaging by bolus tracking, J. Magn. Reson. Imaging, 22, 710, 10.1002/jmri.20460
Nelson, 2003, Multivoxel magnetic resonance spectroscopy of brain tumors, Mol. Cancer Ther., 2, 497
Shic, 2002, Tricarboxylic acid cycle of glia in the in vivo human brain, NMR Biomed., 15, 1, 10.1002/nbm.725
Kurhanewicz, 2011, Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research, Neoplasia, 13, 81, 10.1593/neo.101102
Pinker, 2012, Molecular imaging of cancer: MR spectroscopy and beyond, Eur. J. Radiol., 81, 566, 10.1016/j.ejrad.2010.04.028
Andronesi, 2017, Early changes in glioblastoma metabolism measured by MR spectroscopic imaging during combination of anti-angiogenic cediranib and chemoradiation therapy are associated with survival, NPJ Precis. Oncol., 1, 20, 10.1038/s41698-017-0020-3
Arias-Ramos, N., Ferrer-Font, L., Lope-Piedrafita, S., Mocioiu, V., Julià-Sapé, M., Pumarola, M., Arús, C., and Candiota, A.P. (2017). Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites, 7.
Laprie, A., Ken, S., Filleron, T., Lubrano, V., Vieillevigne, L., Tensaouti, F., Catalaa, I., Boetto, S., Khalifa, J., and Attal, J. (2019). Dose-painting multicenter phase III trial in newly diagnosed glioblastoma: the SPECTRO-GLIO trial comparing arm A standard radiochemotherapy to arm B radiochemotherapy with simultaneous integrated boost guided by MR spectroscopic imaging. BMC Cancer, 19.
Schlemmer, 2008, Simultaneous MR/PET Imaging of the Human Brain: Feasibility Study, Radiology, 248, 1028, 10.1148/radiol.2483071927
Pichler, 2010, PET/MRI: Paving the Way for the Next Generation of Clinical Multimodality Imaging Applications, J. Nucl. Med., 51, 333, 10.2967/jnumed.109.061853
Chaddad, 2019, Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation, Front. Oncol., 9, 374, 10.3389/fonc.2019.00374
Chen, 2019, Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors, Front. Oncol., 9, 806, 10.3389/fonc.2019.00806
Wolbers, 2014, Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies, Chin. J. Cancer, 33, 8, 10.5732/cjc.013.10219
Li, 2016, The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection?, J. Neurosurg., 124, 977, 10.3171/2015.5.JNS142087
Sanai, 2011, An extent of resection threshold for newly diagnosed glioblastomas, J. Neurosurg., 115, 3, 10.3171/2011.2.JNS10998
De Vleeschouwer, S. (2017). Current Standards of Care in Glioblastoma Therapy. Glioblastoma, Codon Publications.
Hegi, 2005, MGMT gene silencing and benefit from temozolomide in glioblastoma, N. Engl. J. Med., 352, 997, 10.1056/NEJMoa043331
Herrlinger, 2019, Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA09): A randomised, open-label, phase 3 trial, Lancet, 393, 678, 10.1016/S0140-6736(18)31791-4
Suchorska, 2016, Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma—results from the DIRECTOR trial, Neuro Oncol., 18, 549, 10.1093/neuonc/nov326
Gramatzki, 2018, Bevacizumab may improve quality of life, but not overall survival in glioblastoma: An epidemiological study, Ann. Oncol., 29, 1431, 10.1093/annonc/mdy106
Wick, 2017, Lomustine and Bevacizumab in Progressive Glioblastoma, N. Engl. J. Med., 377, 1954, 10.1056/NEJMoa1707358
Walker, 1979, An analysis of dose-effect relationship in the radiotherapy of malignant gliomas, Int. J. Radiat. Oncol., 5, 1725, 10.1016/0360-3016(79)90553-4
Frankel, 1958, Glioblastoma multiforme; review of 219 cases with regard to natural history, pathology, diagnostic methods, and treatment, J. Neurosurg., 15, 489, 10.3171/jns.1958.15.5.0489
Sheline, 1977, Radiation therapy of brain tumors, Cancer, 39, 873, 10.1002/1097-0142(197702)39:2+<873::AID-CNCR2820390725>3.0.CO;2-Y
Yabroff, 2012, Patterns of care and survival for patients with glioblastoma multiforme diagnosed during 2006, Neuro Oncol., 14, 351, 10.1093/neuonc/nor218
Stupp, 2017, Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma, JAMA, 318, 2306, 10.1001/jama.2017.18718
Vlassenko, 2000, Evaluation of early response to SU101 target-based therapy in patients with recurrent supratentorial malignant gliomas using FDG PET and Gd-DTPA MRI, J. Neurooncol., 46, 249, 10.1023/A:1006481313747
Prados, 2006, Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma1, Neuro Oncol., 8, 67, 10.1215/S1522851705000451
Cloughesy, 2005, Phase I Trial of Tipifarnib in Patients With Recurrent Malignant Glioma Taking Enzyme-Inducing Antiepileptic Drugs: A North American Brain Tumor Consortium Study, J. Clin. Oncol., 23, 6647, 10.1200/JCO.2005.10.068
Chang, 2004, Phase I/pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-inducing antiepileptic drugs, Investig. New Drugs, 22, 427, 10.1023/B:DRUG.0000036685.72140.03
Kreisl, 2010, A phase I/II trial of enzastaurin in patients with recurrent high-grade gliomas, Neuro Oncol., 12, 181, 10.1093/neuonc/nop042
Choucair, 1986, Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas, J. Neurosurg., 65, 654, 10.3171/jns.1986.65.5.0654
Ammirati, 1987, Reoperation in the treatment of recurrent intracranial malignant gliomas, Neurosurgery, 21, 607, 10.1227/00006123-198711000-00001
Loeffler, 1990, Clinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas, Int. J. Radiat. Oncol., 19, 1455, 10.1016/0360-3016(90)90358-Q
Dhermain, 2004, Récidives dans les tumeurs gliales: place de la radiothérapie [Role of radiotherapy in recurrent gliomas], Bull. Cancer, 91, 883
Combs, S.E., Debus, J., and Schulz-Ertner, D. (2007). Radiotherapeutic alternatives for previously irradiated recurrent gliomas. BMC Cancer, 7.
Fogh, 2010, Hypofractionated Stereotactic Radiation Therapy: An Effective Therapy for Recurrent High-Grade Gliomas, J. Clin. Oncol., 28, 3048, 10.1200/JCO.2009.25.6941
Batchelor, 2013, Phase III Randomized Trial Comparing the Efficacy of Cediranib As Monotherapy, and in Combination With Lomustine, Versus Lomustine Alone in Patients With Recurrent Glioblastoma, J. Clin. Oncol., 31, 3212, 10.1200/JCO.2012.47.2464
Kong, 2006, A pilot study of metronomic temozolomide treatment in patients with recurrent temozolomide-refractory glioblastoma, Oncol. Rep., 16, 1117
Friedman, 2009, Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma, J. Clin. Oncol., 27, 4733, 10.1200/JCO.2008.19.8721
Zustovich, 2009, A phase II study of cisplatin and temozolomide in heavily pre-treated patients with temozolomide-refractory high-grade malignant glioma, Anticancer. Res., 29, 4275
Reardon, 2020, Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma, JAMA Oncol., 6, 1, 10.1001/jamaoncol.2020.1024
Halasz, 2017, Treatment of Gliomas: A Changing Landscape, Int. J. Radiat. Oncol., 98, 255, 10.1016/j.ijrobp.2017.02.223
Briere, 2017, Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: single institution clinical experience, Radiat. Oncol., 12, 79, 10.1186/s13014-017-0810-3
Shaffer, 2010, A Comparison of Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Frontal and Temporal High-Grade Gliomas, Int. J. Radiat. Oncol., 76, 1177, 10.1016/j.ijrobp.2009.03.013
Combs, 2005, Efficacy of Fractionated Stereotactic Reirradiation in Recurrent Gliomas: Long-Term Results in 172 Patients Treated in a Single Institution, J. Clin. Oncol., 23, 8863, 10.1200/JCO.2005.03.4157
Cho, 1999, Single dose versus fractionated stereotactic radiotherapy for recurrent high-grade gliomas, Int. J. Radiat. Oncol., 45, 1133, 10.1016/S0360-3016(99)00336-3
Wang, 2016, Hypofractionated radiation therapy versus standard fractionated radiation therapy with concurrent temozolomide in elderly patients with newly diagnosed glioblastoma, Pr. Radiat. Oncol., 6, 306, 10.1016/j.prro.2015.12.001
Tsien, 2009, Phase I Three-Dimensional Conformal Radiation Dose Escalation Study in Newly Diagnosed Glioblastoma: Radiation Therapy Oncology Group Trial 98-03, Int. J. Radiat. Oncol., 73, 699, 10.1016/j.ijrobp.2008.05.034
Cordova, 2016, Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients, Neuro Oncol., 18, 1180, 10.1093/neuonc/now036
Cao, 2017, MR-guided radiation therapy: transformative technology and its role in the central nervous system, Neuro Oncol., 19, ii16, 10.1093/neuonc/nox006
Schiffer, 2015, The Microenvironment in Gliomas: Phenotypic Expressions, Cancers, 7, 2352, 10.3390/cancers7040896
Schiffer, D., Annovazzi, L., Casalone, C., Corona, C., and Mellai, M. (2018). Glioblastoma: Microenvironment and Niche Concept. Cancers, 11.
Mannino, 2011, Radioresistance of glioma stem cells: Intrinsic characteristic or property of the ‘microenvironment-stem cell unit’?, Mol. Oncol., 5, 374, 10.1016/j.molonc.2011.05.001
Jamal, 2012, The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells, Neoplasia, 14, 150, 10.1593/neo.111794
Farace, C., Oliver, J.A., Melguizo, C., Alvarez, P., Bandiera, P., Rama, A.R., Malaguarnera, G., Ortiz, R., Madeddu, R., and Prados, J. (2015). Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells. PLoS ONE, 10.
Calabrese, 2007, A Perivascular Niche for Brain Tumor Stem Cells, Cancer Cell, 11, 69, 10.1016/j.ccr.2006.11.020
Fidoamore, 2016, Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance, Stem Cells Int., 2016, 1, 10.1155/2016/6809105
Muz, 2015, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia, 3, 83, 10.2147/HP.S93413
Kaur, 2005, Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis1, Neuro-oncology, 7, 134, 10.1215/S1152851704001115
Li, 2009, Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells, Cancer Cell, 15, 501, 10.1016/j.ccr.2009.03.018
Gray, 1953, The Concentration of Oxygen Dissolved in Tissues at the Time of Irradiation as a Factor in Radiotherapy, Br. J. Radiol., 26, 638, 10.1259/0007-1285-26-312-638
Marampon, 2014, Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay, Int. J. Oncol., 44, 2121, 10.3892/ijo.2014.2358
Gustafsson, 2005, Hypoxia Requires Notch Signaling to Maintain the Undifferentiated Cell State, Dev. Cell, 9, 617, 10.1016/j.devcel.2005.09.010
Covello, 2006, HIF-2 regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth, Genes Dev., 20, 557, 10.1101/gad.1399906
Li, 2013, Hypoxia Enhances Stemness of Cancer Stem Cells in Glioblastoma: An In Vitro Study, Int. J. Med. Sci., 10, 399, 10.7150/ijms.5407
Heddleston, 2009, The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype, Cell Cycle, 8, 3274, 10.4161/cc.8.20.9701
Michiels, 2016, Cycling hypoxia: A key feature of the tumor microenvironment, Biochim. Biophys. Acta, 1866, 76
Hsieh, 2010, Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity, Oncol. Rep., 24, 1629, 10.3892/or_00001027
Lesueur, 2019, Hypoxia Imaging and Adaptive Radiotherapy: A State-of-the-Art Approach in the Management of Glioma, Front. Med., 6, 117, 10.3389/fmed.2019.00117
McGee, 2010, Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation, Int. J. Radiat. Oncol., 76, 1537, 10.1016/j.ijrobp.2009.12.010
Venneti, 2017, Metabolic Reprogramming in Brain Tumors, Annu. Rev. Pathol. Mech. Dis., 12, 515, 10.1146/annurev-pathol-012615-044329
Zhou, W., and Wahl, D.R. (2019). Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers, 11.
Libby, 2018, The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells, Biochim Biophys Acta Rev. Cancer, 1869, 175, 10.1016/j.bbcan.2018.01.004
Duman, 2019, Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation, Cell Metab., 30, 274, 10.1016/j.cmet.2019.04.004
Oliva, 2018, Griguer, IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling, Cell Commun. Signal, 16, 61, 10.1186/s12964-018-0273-7
Oliva, 2016, Identification of Small Molecule Inhibitors of Human CytochromecOxidase That Target Chemoresistant Glioma Cells, J. Biol. Chem., 291, 24188, 10.1074/jbc.M116.749978
Oliva, 2017, Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit, Oncotarget, 8, 37568, 10.18632/oncotarget.17247
Oliva, C.R., Moellering, D., Gillespie, G.Y., and Griguer, C.E. (2011). Acquisition of Chemoresistance in Gliomas Is Associated with Increased Mitochondrial Coupling and Decreased ROS Production. PLoS ONE, 6.
Oliva, 2010, Acquisition of Temozolomide Chemoresistance in Gliomas Leads to Remodeling of Mitochondrial Electron Transport Chain, J. Biol. Chem., 285, 39759, 10.1074/jbc.M110.147504
Wolf, 2011, Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme, J. Cell Biol., 192, 313, 10.1083/JCB1922OIA1
Vartanian, 2016, Targeting hexokinase 2 enhances response to radio-chemotherapy in glioblastoma, Oncotarget, 7, 69518, 10.18632/oncotarget.11680
Calvert, 2017, Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation, Cell Rep., 19, 1858, 10.1016/j.celrep.2017.05.014
Wahl, 2016, Glioblastoma Therapy Can Be Augmented by Targeting IDH1-Mediated NADPH Biosynthesis, Cancer Res., 77, 960, 10.1158/0008-5472.CAN-16-2008
You, 2013, Mitochondrial protein ATPase family, AAA domain containing 3A correlates with radioresistance in glioblastoma, Neuro Oncol., 15, 1342, 10.1093/neuonc/not077
Tortosa, 2011, TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells, Radiother. Oncol., 101, 132, 10.1016/j.radonc.2011.07.002
Visvader, 2008, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions, Nat. Rev. Cancer, 8, 755, 10.1038/nrc2499
Rosen, 2009, The Increasing Complexity of the Cancer Stem Cell Paradigm, Science, 324, 1670, 10.1126/science.1171837
Ignatova, 2002, Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro, Glia, 39, 193, 10.1002/glia.10094
Hemmati, 2003, Cancerous stem cells can arise from pediatric brain tumors, Proc. Natl. Acad. Sci., 100, 15178, 10.1073/pnas.2036535100
Singh, 2003, Identification of a cancer stem cell in human brain tumors, Cancer Res., 63, 5821
Gallia, 2004, Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma, Cancer Res., 64, 7011, 10.1158/0008-5472.CAN-04-1364
Lathia, 2010, Integrin Alpha 6 Regulates Glioblastoma Stem Cells, Cell Stem Cell, 6, 421, 10.1016/j.stem.2010.02.018
Chen, 2012, A restricted cell population propagates glioblastoma growth after chemotherapy, Nature, 488, 522, 10.1038/nature11287
Bao, 2006, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444, 756, 10.1038/nature05236
Kim, 2009, Cancer Stem Cells and Their Mechanism of Chemo-Radiation Resistance, Int. J. Stem Cells, 2, 109, 10.15283/ijsc.2009.2.2.109
Stanzani, 2017, Radioresistance of mesenchymal glioblastoma initiating cells correlates with patient outcome and is associated with activation of inflammatory program, Oncotarget, 8, 73640, 10.18632/oncotarget.18363
Lal, 2014, DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2, Oncogene, 34, 3994
Rheinbay, 2014, Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells, Cell, 157, 580, 10.1016/j.cell.2014.02.030
Ligon, 2007, Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma, Neuron, 53, 503, 10.1016/j.neuron.2007.01.009
Veselská, R., Kuglik, P., Cejpek, P., Svachova, H., Neradil, J., Loja, T., and Relichova, J. (2006). Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer, 6.
Anido, 2010, TGF-β Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma, Cancer Cell, 18, 655, 10.1016/j.ccr.2010.10.023
Liu, 2006, Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma, Mol. Cancer, 5, 67, 10.1186/1476-4598-5-67
Son, 2009, SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma, Cell Stem Cell, 4, 440, 10.1016/j.stem.2009.03.003
Xu, 2010, CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma, Cancer Res., 70, 2455, 10.1158/0008-5472.CAN-09-2505
Ogden, 2008, Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas, Neurosurgery, 62, 505, 10.1227/01.neu.0000316019.28421.95
Ong, 2017, PAF promotes stemness and radioresistance of glioma stem cells, Proc. Natl. Acad. Sci. USA, 114, E9086, 10.1073/pnas.1708122114
Povlsen, 2012, Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass, Nature, 14, 1089
Wang, 2016, Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro, Cancer Lett., 371, 274, 10.1016/j.canlet.2015.12.012
2014, Glioblastoma Heterogeneity and Cancer Cell Plasticity, Crit. Rev. Oncog., 19, 327, 10.1615/CritRevOncog.2014011777
Patel, 2014, Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science, 344, 1396, 10.1126/science.1254257
Singh, 2004, Identification of human brain tumour initiating cells, Nature, 432, 396, 10.1038/nature03128
Castellino, 2007, Mechanisms of Disease: the PI3K–Akt–PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors, Nat. Clin. Pr. Neurol., 3, 682, 10.1038/ncpneuro0661
Yaes, 1989, Tumor heterogeneity, tumor size, and radioresistance, Int. J. Radiat. Oncol., 17, 993, 10.1016/0360-3016(89)90147-8
Sottoriva, 2013, Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics, Proc. Natl. Acad. Sci. USA, 110, 4009, 10.1073/pnas.1219747110
Shapiro, 1981, Isolation, karyotype, and clonal growth of heterogeneous subpopulations of human malignant gliomas, Cancer Res., 41, 2349
Zalcberg, 2015, Molecular Genetics of Glioblastomas, Neuroimaging Clin. N. Am., 25, 97, 10.1016/j.nic.2014.09.007
Meyer, 2015, Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity, Proc. Natl. Acad. Sci. USA, 112, 851, 10.1073/pnas.1320611111
Verhaak, 2010, Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, 17, 98, 10.1016/j.ccr.2009.12.020
Wang, 2017, Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment, Cancer Cell, 32, 42, 10.1016/j.ccell.2017.06.003
Parsons, 2008, An Integrated Genomic Analysis of Human Glioblastoma Multiforme, Science, 321, 1807, 10.1126/science.1164382
Thon, 2013, Personalized treatment strategies in glioblastoma: MGMT promoter methylation status, OncoTargets Ther., 6, 1363, 10.2147/OTT.S50208
Zhang, 2013, IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma, Neuro Oncol., 15, 1114, 10.1093/neuonc/not087
Nobusawa, 2009, IDH1 Mutations as Molecular Signature and Predictive Factor of Secondary Glioblastomas, Clin. Cancer Res., 15, 6002, 10.1158/1078-0432.CCR-09-0715
Hartmann, 2010, Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas, Acta Neuropathol., 120, 707, 10.1007/s00401-010-0781-z
Jiao, 2012, Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas, Oncotarget, 3, 709, 10.18632/oncotarget.588
Yin, 2019, IDH1-R132H mutation radiosensitizes U87MG glioma cells via epigenetic downregulation of TIGAR, Oncol. Lett., 19, 1322
Pegg, 1990, Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents, Cancer Res., 50, 6119
Yang, 2015, IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry, Oncotarget, 6, 40896, 10.18632/oncotarget.5683
Molenaar, 2014, The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone, Neuro Oncol., 16, 1263, 10.1093/neuonc/nou005
Bartel, 2009, MicroRNAs: Target Recognition and Regulatory Functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002
Fabian, 2010, Regulation of mRNA Translation and Stability by microRNAs, Annu. Rev. Biochem., 79, 351, 10.1146/annurev-biochem-060308-103103
Ryan, 2010, Genetic variation in microRNA networks: the implications for cancer research, Nat. Rev. Cancer, 10, 389, 10.1038/nrc2867
Sana, 2018, Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival, Sci. Rep., 8, 2836, 10.1038/s41598-018-20929-6
Rasmussen, 2012, A Systematic Review of MicroRNA in Glioblastoma Multiforme: Micro-modulators in the Mesenchymal Mode of Migration and Invasion, Mol. Neurobiol., 47, 131
Deng, 2013, miR-124 radiosensitizes human glioma cells by targeting CDK4, J. Neurooncol., 114, 263, 10.1007/s11060-013-1179-2
Toraih, 2019, Deregulated MicroRNA Signature Following Glioblastoma Irradiation, Cancer Control., 26, 1, 10.1177/1073274819847226
Li, 2014, miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status, Curr. Mol. Med., 14, 185, 10.2174/1566524013666131203103147
Moskwa, 2014, A functional screen identifies miRs that induce radioresistance in glioblastomas, Mol. Cancer Res., 12, 1767, 10.1158/1541-7786.MCR-14-0268
Marampon, 2017, HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells, Cancer Lett., 397, 1, 10.1016/j.canlet.2017.03.028
Modesto, 2018, Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1, Cell Death Dis., 9, 872, 10.1038/s41419-018-0853-x
Mukherjee, 2009, EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma, Cancer Res., 69, 4252, 10.1158/0008-5472.CAN-08-4853
Golding, 2009, Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells, Cancer Biol. Ther., 8, 730, 10.4161/cbt.8.8.7927
Oliva, 2015, Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas, Oncotarget, 6, 4330, 10.18632/oncotarget.3015
Godlewski, 2008, Targeting of the Bmi-1 Oncogene/Stem Cell Renewal Factor by MicroRNA-128 Inhibits Glioma Proliferation and Self-Renewal, Cancer Res., 68, 9125, 10.1158/0008-5472.CAN-08-2629
Lessard, 2003, Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells, Nature, 423, 255, 10.1038/nature01572
Jacobs, 1999, The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus, Nature, 397, 164, 10.1038/16476
Facchino, 2010, BMI1 Confers Radioresistance to Normal and Cancerous Neural Stem Cells through Recruitment of the DNA Damage Response Machinery, J. Neurosci., 30, 10096, 10.1523/JNEUROSCI.1634-10.2010
Han, 2017, A molecular view of the radioresistance of gliomas, Oncotarget, 8, 100931, 10.18632/oncotarget.21753
Blanco, 2009, Notch signalling in cancer stem cells, Clin. Transl. Oncol., 11, 11, 10.1007/s12094-009-0305-2
Dontu, 2004, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells, Breast Cancer Res., 6, 1, 10.1186/bcr920
Hitoshi, 2002, Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells, Genes Dev., 16, 846, 10.1101/gad.975202
Hitoshi, 2004, Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling, Genes Dev., 18, 1806, 10.1101/gad.1208404
Wang, 2009, Notch Promotes Radioresistance of Glioma Stem Cells, Stem Cells, 28, 17, 10.1002/stem.261
Manning, 2007, AKT/PKB Signaling: Navigating Downstream, Cell, 129, 1261, 10.1016/j.cell.2007.06.009
Kwiatkowska, 2013, Signaling determinants of glioma cell invasion, Adv. Exp. Med. Biol., 986, 121, 10.1007/978-94-007-4719-7_7
Li, 2009, Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells, Radiat. Oncol., 4, 43, 10.1186/1748-717X-4-43
Mehta, 2015, Radiosensitization of Primary Human Glioblastoma Stem-like Cells with Low-Dose AKT Inhibition, Mol. Cancer Ther., 14, 1171, 10.1158/1535-7163.MCT-14-0708
Matsutani, 2009, Akt/protein kinase B overexpression as an accurate prognostic marker in adult diffuse astrocytoma, Acta Neurochir. (Wien), 151, 263, 10.1007/s00701-009-0199-3
Chakravarti, 2004, The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas, J. Clin. Oncol., 22, 1926, 10.1200/JCO.2004.07.193
Chautard, 2010, Akt signaling pathway: a target for radiosensitizing human malignant glioma, Neuro Oncol., 12, 434
Kao, 2007, Inhibition of Phosphatidylinositol-3-OH Kinase/Akt Signaling Impairs DNA Repair in Glioblastoma Cells following Ionizing Radiation, J. Biol. Chem., 282, 21206, 10.1074/jbc.M703042200
Yang, 2015, LRIG1 enhances the radiosensitivity of radioresistant human glioblastoma U251 cells via attenuation of the EGFR/Akt signaling pathway, Int. J. Clin. Exp. Pathol., 8, 3580
Malik, 2016, LRIGs: A Prognostically Significant Family with Emerging Therapeutic Competence against Cancers, Curr. Cancer Drug Targets, 17, 3, 10.2174/156800961701161202200445
The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.
McCabe, 2015, Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM, Cancer Res., 75, 2159, 10.1158/0008-5472.CAN-14-3502
Ma, 2019, Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair, Cancer Cell, 35, 816, 10.1016/j.ccell.2019.04.011
Wu, 1993, Frequency of p53 tumor suppressor gene mutations in human primary brain tumors, Neurosurgery, 33, 824
Chen, 1995, Constitutional p53 mutations associated with brain tumors in young adults, Cancer Genet. Cytogenet., 82, 106, 10.1016/0165-4608(94)00213-U
Shu, 1998, The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21BAX expression, Proc. Natl. Acad. Sci. USA, 95, 14453, 10.1073/pnas.95.24.14453
Sherry, 2009, STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells, Stem Cells, 27, 2383, 10.1002/stem.185
Guryanova, 2011, Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3, Cancer Cell, 19, 498, 10.1016/j.ccr.2011.03.004
Kesanakurti, 2012, Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma, Oncogene, 32, 5144, 10.1038/onc.2012.546
Yang, 2011, Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis, J. Cell. Physiol., 227, 976, 10.1002/jcp.22806
Xie, 2019, Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells, Redox Biol., 24, 101189, 10.1016/j.redox.2019.101189
Raychaudhuri, 2011, FoxM1: a master regulator of tumor metastasis, Cancer Res., 71, 4329, 10.1158/0008-5472.CAN-11-0640
Medema, 2013, Novel functions of FoxM1: from molecular mechanisms to cancer therapy, Front. Oncol., 3, 30
Lee, Y., Kim, K.H., Kim, D.G., Cho, H.J., Kim, Y., Rheey, J., Shin, K., Seo, Y.J., Choi, Y.-S., and Lee, J.-I. (2015). FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLoS ONE, 10.
Maachani, 2016, FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells, Oncotarget, 7, 77365, 10.18632/oncotarget.12670
Ventero, M.P., Fuentes-Baile, M., Quereda, C., Perez-Valeciano, E., Alenda, C., Garcia-Morales, P., Esposito, D., Dorado, P., Manuel Barbera, V., and Saceda, M. (2019). Radiotherapy resistance acquisition in Glioblastoma. Role of SOCS1 and SOCS3. PLoS ONE, 14.
Martini, 2008, Prognostic relevance of SOCS3 hypermethylation in patients with glioblastoma multiforme, Int. J. Cancer, 123, 2955, 10.1002/ijc.23805
Jin, 2011, Frizzled 4 Regulates Stemness and Invasiveness of Migrating Glioma Cells Established by Serial Intracranial Transplantation, Cancer Res., 71, 3066, 10.1158/0008-5472.CAN-10-1495
Rossi, 2011, β-catenin and Gli1 are prognostic markers in glioblastoma, Cancer Biol. Ther., 11, 753, 10.4161/cbt.11.8.14894
Tompa, 2018, Contribution of the Wnt Pathway to Defining Biology of Glioblastoma, Neuro Molecular Med., 20, 437, 10.1007/s12017-018-8514-x
Lee, 2015, WNT signaling in glioblastoma and therapeutic opportunities, Lab. Investig., 96, 137, 10.1038/labinvest.2015.140
Mccord, 2017, Targeting WNT Signaling for Multifaceted Glioblastoma Therapy, Front. Cell. Neurosci., 11, 318, 10.3389/fncel.2017.00318
Kim, Y., Kim, K.H., Lee, H., Yang, H., Kim, D., Kang, W., Jin, J., Joo, K.M., Lee, J., and Nam, D.-H. (April, January 31). Wnt activation is implicated in glioblastoma radioresistance. Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research, Chicago, IL, USA. Abstract nr 3458.
Dong, 2015, Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells, Strahlenther Onkol., 191, 672, 10.1007/s00066-015-0858-7
Barnett, 2009, Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype, Nat. Rev. Cancer, 9, 134, 10.1038/nrc2587
Baskar, 2012, Cancer and Radiation Therapy: Current Advances and Future Directions, Int. J. Med Sci., 9, 193, 10.7150/ijms.3635
Lohse, 2013, Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia, Cancer Lett., 341, 63, 10.1016/j.canlet.2012.11.019
Krause, 2017, Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments, Adv. Drug Deliv. Rev., 109, 63, 10.1016/j.addr.2016.02.002
Lalla, 2017, OraRad Study Group Oral complications at 6 months after radiation therapy for head and neck cancer, Oral Dis., 23, 1134, 10.1111/odi.12710
Shenoy, 1992, Chemical Radiosensitizers in Cancer Therapy, Cancer Investig., 10, 533, 10.3109/07357909209024816
Wardman, 2007, Chemical radiosensitizers for use in radiotherapy, Clin. Oncol. (R. Coll. Radiol.), 196, 397, 10.1016/j.clon.2007.03.010
Hodgkiss, 1983, Enhancement of Misonidazole Radiosensitization by an Inhibitor of Glutathione Biosynthesis, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 43, 179, 10.1080/09553008314550201
Zhao, 2009, Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation, Free. Radic. Biol. Med., 47, 176, 10.1016/j.freeradbiomed.2009.04.022
Bache, 2011, Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions, Radiat. Oncol., 6, 111, 10.1186/1748-717X-6-111
Raleigh, 2013, Molecular targets and mechanisms of radiosensitization using DNA damage response pathways, Futur. Oncol., 9, 219, 10.2217/fon.12.185
Adams, 1973, Chemical radiosensitization of hypoxic cells, Br. Med Bull., 29, 48, 10.1093/oxfordjournals.bmb.a070956
Fowler, 1976, Radiosensitizers of hypoxic cells in solid tumors, Cancer Treat. Rev., 3, 227, 10.1016/S0305-7372(76)80012-6
Goel, 2017, Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy, ACS Nano, 11, 5233, 10.1021/acsnano.7b03675
Dubrovska, 2017, Nanoparticles for radiooncology: Mission, vision, challenges, Biomater, 120, 155, 10.1016/j.biomaterials.2016.12.010
Lawrence, 2003, The mechanism of action of radiosensitization of conventional chemotherapeutic agents, Semin. Radiat. Oncol., 13, 13, 10.1053/srao.2003.50002
Wilson, 2006, Biologic Basis for Combining Drugs With Radiation, Semin. Radiat. Oncol., 16, 2, 10.1016/j.semradonc.2005.08.001
Shewach, 1996, Radiosensitization of human solid tumor cell lines with gemcitabine, Semin. Oncol., 23, 65
Lawrence, 1999, Radiosensitization by gemcitabine, Oncol. (Williston Park), 13, 55
Azria, 2002, Gemcitabine et radiations ionisantes: radiosensibilisation ou association radiochimiothérapique [Gemcitabine and ionizing radiations: radiosensitization or radio-chemotherapy combination], Bull. Cancer, 89, 369
Cuneo, 2018, Enhancing the Radiation Response in KRAS Mutant Colorectal Cancers Using the c-Met Inhibitor Crizotinib, Transl. Oncol., 12, 209, 10.1016/j.tranon.2018.10.005
Nolte, E.M., Joubert, A., Lakier, R., Van Rensburg, A., and Mercier, A.E. (2018). Exposure of Breast and Lung Cancer Cells to a Novel Estrone Analog Prior to Radiation Enhances Bcl-2-Mediated Cell Death. Int. J. Mol. Sci., 19.
Rey, 2017, Molecular targeting of hypoxia in radiotherapy, Adv. Drug Deliv. Rev., 109, 45, 10.1016/j.addr.2016.10.002
Horsman, 2016, The impact of hypoxia and its modification of the outcome of radiotherapy, J. Radiat. Res., 57, i90, 10.1093/jrr/rrw007
Bousquet, 2019, Markers of Mitochondrial Metabolism in Tumor Hypoxia, Systemic Inflammation, and Adverse Outcome of Rectal Cancer, Transl. Oncol., 12, 76, 10.1016/j.tranon.2018.09.010
Chapman, 1971, Radiosensitization of mammalian cells by p-nitroacetophenone. I. Characterization in asynchronous and synchronous populations, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 19, 561, 10.1080/09553007114550741
Barker, 2015, The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence, Nat. Rev. Cancer, 15, 409, 10.1038/nrc3958
Overgaard, 1989, Misonidazole combined with split-course radiotherapy in the treatment of invasive carcinoma of larynx and pharynx: Report from the DAHANCA 2 study, Int. J. Radiat. Oncol., 16, 1065, 10.1016/0360-3016(89)90917-6
Urtasun, 1978, Peripheral neuropathy related to misonidazole: Incidence and pathology, Br. J. Cancer Suppl., 3, 271
Takaoka, 2017, Biological effects of hydrogen peroxide administered intratumorally with or without irradiation in murine tumors, Cancer Sci., 108, 1787, 10.1111/cas.13302
Koch, 2002, Radiosensitization of hypoxic tumor cells by dodecafluoropentane: a gas-phase perfluorochemical emulsion, Cancer Res., 62, 3626
Harrison, 2014, Heterogeneity in Tissue Oxygenation: From Physiological Variability in Normal Tissues to Pathophysiological Chaos in Malignant Tumours, Adv. Exp. Med. Biol., 812, 25, 10.1007/978-1-4939-0620-8_4
Gallez, 2017, Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance, Biochim. Biophys. Acta Bioenerg., 1858, 700, 10.1016/j.bbabio.2017.01.002
Benej, 2018, Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism, Proc. Natl. Acad. Sci. USA, 115, 10756, 10.1073/pnas.1808945115
Chang, 2007, Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme, Clin. Adv. Hematol. Oncol., 5, 894
Placantonakis, 2018, Evaluation of Radioresponse and Radiosensitizers in Glioblastoma Organotypic Cultures, Glioblastoma. Methods in Molecular Biology, Volume 1741, 171, 10.1007/978-1-4939-7659-1_13
Sigmond, 2009, Gemcitabine uptake in glioblastoma multiforme: potential as a radiosensitizer, Ann. Oncol., 20, 182, 10.1093/annonc/mdn543
Berg, 2007, Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines, Int. J. Radiat. Oncol., 69, 1246, 10.1016/j.ijrobp.2007.07.2366
Metro, 2009, Phase II study of fixed dose rate gemcitabine as radiosensitizer for newly diagnosed glioblastoma multiforme, Cancer Chemother. Pharmacol., 65, 391, 10.1007/s00280-009-1155-x
Setua, 2014, Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma, Nanoscale, 6, 10865, 10.1039/C4NR03693J
Veerman, 1993, 2′,2′-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines, Biochem. Pharmacol., 46, 762, 10.1016/0006-2952(93)90566-F
Kemeny, 2015, STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma, Brain Pathol., 26, 18
Lesueur, 2018, Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation, Sci. Rep., 8, 1, 10.1038/s41598-018-22022-4
Narayan, 2017, Identification of MEK162 as a Radiosensitizer for the Treatment of Glioblastoma, Mol. Cancer Ther., 17, 347, 10.1158/1535-7163.MCT-17-0480
Prados, 2009, Phase II Study of Erlotinib Plus Temozolomide During and After Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma, J. Clin. Oncol., 27, 579, 10.1200/JCO.2008.18.9639
Chinnaiyan, 2017, A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913, Neuro Oncol., 20, 666, 10.1093/neuonc/nox209
Krauze, 2015, A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma, Int. J. Radiat. Oncol., 92, 986, 10.1016/j.ijrobp.2015.04.038
Galanis, 2018, Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02, Neuro Oncol., 20, 546, 10.1093/neuonc/nox161
Lee, 2015, A Multicenter, Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients, Clin. Cancer Res., 21, 3610, 10.1158/1078-0432.CCR-14-3220
Butowski, 2011, Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma, Neuro Oncol., 13, 1331, 10.1093/neuonc/nor130
Grossman, 2009, Talampanel With Standard Radiation and Temozolomide in Patients With Newly Diagnosed Glioblastoma: A Multicenter Phase II Trial, J. Clin. Oncol., 27, 4155, 10.1200/JCO.2008.21.6895
Carlson, 2009, Radiosensitizing Effects of Temozolomide Observed in vivo only in a Subset of O6-Methylguanine-DNA Methyltransferase Methylated Glioblastoma Multiforme Xenografts, Int. J. Radiat. Oncol., 75, 212, 10.1016/j.ijrobp.2009.04.026
Kong, 2018, Phase 2 Study of Bortezomib Combined With Temozolomide and Regional Radiation Therapy for Upfront Treatment of Patients With Newly Diagnosed Glioblastoma Multiforme: Safety and Efficacy Assessment, Int. J. Radiat. Oncol., 100, 1195, 10.1016/j.ijrobp.2018.01.001
Jue, 2017, Veliparib in combination with radiotherapy for the treatment of MGMT unmethylated glioblastoma, J. Transl. Med., 15, 61, 10.1186/s12967-017-1164-1
Sarcar, 2011, Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines, Mol. Cancer Ther., 10, 2405, 10.1158/1535-7163.MCT-11-0469
Yan, 2016, Targeting autophagy to sensitive glioma to temozolomide treatment, J. Exp. Clin. Cancer Res., 35, 23, 10.1186/s13046-016-0303-5
Ye, H., Chen, M., Cao, F., Huang, H., Zhan, R., and Zheng, X. (2016). Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. BMC Neurol., 16.
Allen, 2019, First-in-Human Phase I Clinical Trial of Pharmacologic Ascorbate Combined with Radiation and Temozolomide for Newly Diagnosed Glioblastoma, Clin. Cancer Res., 25, 6590, 10.1158/1078-0432.CCR-19-0594
Oronsky, 2016, RRx-001, A novel dinitroazetidine radiosensitizer, Investig. New Drugs, 34, 371, 10.1007/s10637-016-0326-y
Brachman, 2015, Phase 1/2 trials of Temozolomide, Motexafin Gadolinium, and 60-Gy fractionated radiation for newly diagnosed supratentorial glioblastoma multiforme: final results of RTOG 0513, Int. J. Radiat. Oncol., 91, 961, 10.1016/j.ijrobp.2014.12.050
Graham, 2018, Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment, Int. J. Nanomed., 13, 6049, 10.2147/IJN.S140462
Gainer, 2017, Trans sodium crocetinate with temozolomide and radiation therapy for glioblastoma multiforme, J. Neurosurg., 126, 460, 10.3171/2016.3.JNS152693
Grimm, 2012, Phase I study of arsenic trioxide and temozolomide in combination with radiation therapy in patients with malignant gliomas, J. Neuro-Oncology, 110, 237, 10.1007/s11060-012-0957-6
Kumthekar, 2017, A phase II trial of arsenic trioxide and temozolomide in combination with radiation therapy for patients with malignant gliomas, J. Neurooncol., 133, 589, 10.1007/s11060-017-2469-x
Bell, 2017, Differential Response of Glioma Stem Cells to Arsenic Trioxide Therapy Is Regulated by MNK1 and mRNA Translation, Mol. Cancer Res., 16, 32, 10.1158/1541-7786.MCR-17-0397
Takeuchi, 2014, Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma, Neurol. India, 62, 42, 10.4103/0028-3886.128280
Whittaker, 2017, Combination of palbociclib and radiotherapy for glioblastoma, Cell Death Discov., 3, 17033, 10.1038/cddiscovery.2017.33
Carruthers, 2014, Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase, Mol. Oncol., 9, 192, 10.1016/j.molonc.2014.08.003
Durant, 2018, The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models, Sci. Adv., 4, eaat1719, 10.1126/sciadv.aat1719