Radiomic texture analysis based on neurite orientation dispersion and density imaging to differentiate glioblastoma from solitary brain metastasis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fordham AJ, Hacherl CC, Patel N, et al. Differentiating glioblastomas from solitary brain metastases: an update on the current literature of advanced imaging modalities. Cancers. 2021;13(12):2960. https://doi.org/10.3390/cancers13122960
Boire A, Brastianos PK, Garzia L, Valiente M. Brain metastasis. Nat Rev Cancer. 2020;20(1):4–11. https://doi.org/10.1038/s41568-019-0220-y
Bette S, Huber T, Wiestler B, et al. Analysis of fractional anisotropy facilitates differentiation of glioblastoma and brain metastases in a clinical setting. Eur J Radiol. 2016;85(12):2182–7. https://doi.org/10.1016/j.ejrad.2016.10.002
Weller M, van den Bent M, Hopkins K, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15(9):e395–403. https://doi.org/10.1016/S1470-2045(14)70011-7
Dong F, Li Q, Jiang B, et al. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers. Eur Radiol. 2020;30(5):3015–22. https://doi.org/10.1007/s00330-019-06460-w
Lah TT, Novak M, Breznik B. Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol. 2020;60:262–73. https://doi.org/10.1016/j.semcancer.2019.10.010
Artzi M, Bressler I, Ben Bashat D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging: JMRI. 2019;50(2):519–28. https://doi.org/10.1002/jmri.26643
Huang Y, Huang S, Liu Z. Multi-task learning-based feature selection and classification models for glioblastoma and solitary brain metastases. Front Oncol. 2022;12:1000471. https://doi.org/10.3389/fonc.2022.1000471
Lai PH, Chung HW, Chang HC, et al. Susceptibility-weighted imaging provides complementary value to diffusion-weighted imaging in the differentiation between pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors. Eur J Radiol. 2019;117:56–61. https://doi.org/10.1016/j.ejrad.2019.05.021
Romano A, Moltoni G, Guarnera A, et al. Single brain metastasis versus glioblastoma multiforme: a VOI-based multiparametric analysis for differential diagnosis. Radiol Med. 2022;127(5):490–7. https://doi.org/10.1007/s11547-022-01480-x
Zhao J, Li JB, Wang JY, et al. Quantitative analysis of neurite orientation dispersion and density imaging in grading gliomas and detecting IDH-1 gene mutation status. Neuroimage Clin. 2018;19:174–81. https://doi.org/10.1016/j.nicl.2018.04.011
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61(4):1000–16. https://doi.org/10.1016/j.neuroimage.2012.03.072
Xie Y, Li S, Shen N, et al. Assessment of Isocitrate dehydrogenase 1 genotype and cell proliferation in gliomas using multiple diffusion magnetic resonance imaging. Front Neurosci. 2021;22(15):783361. https://doi.org/10.3389/fnins.2021.783361
Gao E, Gao A, Kit Kung W, et al. Histogram analysis based on diffusion kurtosis imaging: differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements. Eur J Radiol. 2022;147:110104. https://doi.org/10.1016/j.ejrad.2021.110104
Qi J, Wang P, Zhao G et al. (2022) Histogram analysis based on neurite orientation dispersion and density MR imaging for differentiation between glioblastoma multiforme and solitary brain metastasis and comparison of the diagnostic performance of two ROI placements. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28419
Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59:1061–9. https://doi.org/10.1016/j.crad.2004.07.008
Ruiz-España S, Ortiz-Ramón R, Pérez-Ramírez Ú, et al. MRI texture-based radiomics analysis for the identification of altered functional networks in alcoholic patients and animal models. Comput Med Imaging Graph. 2023;104:102187. https://doi.org/10.1016/j.compmedimag.2023.102187
Mo X, Chen W, Chen S, et al. MRI texture-based machine learning models for the evaluation of renal function on different segmentations: a proof-of-concept study. Insights into Imaging. 2023;14(1):28. https://doi.org/10.1186/s13244-023-01370-4
Wang X, Dai Y, Lin H, et al. Shape and texture analyses based on conventional MRI for the preoperative prediction of the aggressiveness of pituitary adenomas. Eur Radiol. 2023;33(5):3312–21. https://doi.org/10.1007/s00330-023-09412-7
Li J, Fu S, Gong Z, et al. MRI-based texture analysis of infrapatellar fat pad to predict knee osteoarthritis incidence. Radiology. 2022;304:611–21. https://doi.org/10.1148/radiol.212009
Cui Z, Ren G, Cai R, et al. MRI-based texture analysis for differentiate between pediatric posterior fossa ependymoma type A and B. Eur J Radiol. 2022;152:110288. https://doi.org/10.1016/j.ejrad.2022.110288
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11. https://doi.org/10.1038/s41592-020-01008-z
Song Y, Zhang J, Zhang YD, et al. FeAture Explorer (FAE): a tool for developing and comparing radiomics models. PLoS ONE. 2020;15(8):e0237587. https://doi.org/10.1371/journal.pone.0237587
Ortiz-Ramón R, Ruiz-España S, Mollá-Olmos E, Moratal D. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics. Approach Phys Med. 2020;76:44–54. https://doi.org/10.1016/j.ejmp.2020.06.016
Han Y, Zhang L, Niu S, et al. Differentiation between glioblastoma multiforme and metastasis from the lungs and other sites using combined clinical/routine MRI radiomics. Front cell Dev Biology. 2021;9:710461. https://doi.org/10.3389/fcell.2021.710461
Suh CH, Kim HS, Jung SC, Kim SJ. Diffusion-weighted imaging and diffusion tensor imaging for differentiating high-grade glioma from solitary brain metastasis: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2018;39(7):1208–14. https://doi.org/10.3174/ajnr.A5650
Skogen K, Schulz A, Helseth E, et al. Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis. Acta Radiol. 2019;60(3):356–66. https://doi.org/10.1177/0284185118780889
Mao J, Zeng W, Zhang Q, et al. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models. BMC Med Imaging. 2020;20(1):124. https://doi.org/10.1186/s12880-020-00524-w
Kadota Y, Hirai T, Azuma M, et al. Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging. J Neuroradiol. 2020;47(3):197–202. https://doi.org/10.1016/j.neurad.2018.10.005
Demircioğlu A. Evaluation of the dependence of radiomic features on the machine learning model. Insights into Imaging. 2022;13(1):28. https://doi.org/10.1186/s13244-022-01170-2
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106
Liu C, Zhang M, Yan X, et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. Sci Adv. 2023;9(4):eadd8977. https://doi.org/10.1126/sciadv.add8977