Mất oxy xuyên tâm và màng sắt hoạt động như một hệ thống tích hợp để giảm thiểu sự tích lũy cadmium trong rau muống

Qingqing Xiao1, Yuanyuan Tang2, Lu Huang3, Yihan Chi2,4, Zhihong Ye4
1School of Biology, Food and Environment, Hefei University, Hefei, China
2Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, China
4School of Life Sciences, Sun Yat-sen University, Guangzhou, China

Tóm tắt

Rau muống có khả năng hấp thụ cadmium (Cd) rất tốt, điều này gây ra rủi ro đối với sức khỏe con người. Việc chọn các giống rau muống có hàm lượng Cd thấp là một chiến lược giảm thiểu tiềm năng, nhưng việc sử dụng rộng rãi điều này bị hạn chế do thiếu hiểu biết rõ ràng về các yếu tố quan trọng của cây quyết định sự tích lũy Cd. Nghiên cứu này nhằm làm sáng tỏ các tác động và tương tác của sự mất oxy xuyên tâm (ROL) và màng sắt (Fe) lên sự tích lũy Cd trong các giống rau muống khác nhau và cơ chế tiềm ẩn. Một thí nghiệm trong chậu và bốn thí nghiệm thủy canh sử dụng mười giống rau muống khác nhau đã được thực hiện với các điều kiện thông khí, cung cấp Fe và stress Cd khác nhau. Sự tích lũy Cd của các giống khác nhau được xác định bởi cả quá trình hấp thụ qua rễ và vận chuyển từ rễ lên thân. Có sự chênh lệch 4.0, 3.8 và 6.3 lần giữa các giống khác nhau về ROL, màng Fe và sự tích lũy Cd trong thân, tương ứng. Màng Fe ở rễ và vùng rizosphere làm giảm sự hấp thụ Cd qua rễ và được điều chỉnh bởi cung cấp Fe và ROL. ROL tăng lên trong điều kiện nước đứng yên làm tăng màng Fe và kích thích việc phân bố lại mặc trên các trục rễ. Việc giữ Cd ở rễ thông qua quá trình phân loại và chelat đã ức chế quá trình chuyển Cd từ rễ lên thân. Màng Fe, ROL và sự giữ Cd ở rễ tạo thành một hệ thống tương tác nhằm giảm thiểu sự hấp thụ và tích lũy Cd trong rau muống. Các giống rau muống có Cd thấp thể hiện ROL cao hơn, màng Fe lớn hơn và khả năng giữ Cd ở rễ hiệu quả hơn, và phản ứng với điều kiện nước đứng yên bằng cách tăng ROL và tăng cường sự lắng đọng Fe trên bề mặt rễ. Nghiên cứu này cung cấp những hiểu biết mới về cơ chế tích lũy Cd trong rau muống và cơ sở lý thuyết cho việc chọn giống rau muống có hàm lượng Cd thấp.

Từ khóa

#cadmium #rau muống #mất oxy xuyên tâm #màng sắt #tích lũy Cd

Tài liệu tham khảo

Abiko T, Kotula L, Shiono K et al (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ 35:1618–1630. https://doi.org/10.1111/j.1365-3040.2012.02513.x Adrees M, Ali S, Rizwan M et al (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197. https://doi.org/10.1016/j.ecoenv.2015.05.011 Cheng H, Chen D-T, Tam NF-Y et al (2012) Interactions among Fe2+, S2–, and Zn2+ tolerance, root anatomy, and radial oxygen loss in mangrove plants. J Exp Bot 63:2619–2630. https://doi.org/10.1093/jxb/err440 Cheng H, Wang M, Wong MH, Ye Z (2014) Does radial oxygen loss and iron plaque formation on roots alter cd and pb uptake and distribution in rice plant tissues? Plant Soil 375:137–148. https://doi.org/10.1007/s11104-013-1945-0 Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium Poisoning. Trends Plant Sci 18:92–99. https://doi.org/10.1016/j.tplants.2012.08.003 Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36. https://doi.org/10.1046/j.1365-3040.2003.00846.x Cui J, Liu T, Li F et al (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369. https://doi.org/10.1016/j.envpol.2017.05.014 Deng D, Wu S-C, Wu F-Y et al (2010) Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ Pollut 158:2589–2595. https://doi.org/10.1016/j.envpol.2010.05.015 Gao Y, Tong H, Zhao Z et al (2023) Effects of Fe oxides and their redox cycling on cd activity in paddy soils: a review. J Hazard Mater 456:131665. https://doi.org/10.1016/j.jhazmat.2023.131665 Göthberg A, Greger M, Bengtsson B-E (2002) Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem 21:1934–1939. https://doi.org/10.1002/etc.5620210922 He B, Ling L, Zhang L et al (2015) Cultivar-specific differences in heavy metal (cd, cr, Cu, Pb, and zn) concentrations in water spinach (Ipomoea aquatic ‘Forsk’) grown on metal-contaminated soil. Plant Soil 386:251–262. https://doi.org/10.1007/s11104-014-2257-8 Huang X, Tang K, Xu X, Cai C (2017) Interaction of Fe-Mn plaque and Arthrobacter echigonensis MN1405 and uptake and translocation of cd by Phytolacca acinosa Roxb. Chemosphere 174:585–592. https://doi.org/10.1016/j.chemosphere.2017.02.012 Huang L, Li WC, Tam NFY, Ye Z (2019) Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L). J Environ Sci 75:296–306. https://doi.org/10.1016/j.jes.2018.04.005 Huang G, Ding C, Li Y et al (2020) Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L). J Hazard Mater 398:122860. https://doi.org/10.1016/j.jhazmat.2020.122860 Huang G, Pan D, Wang M et al (2022) Regulation of iron and cadmium uptake in rice roots by iron(III) oxide nanoparticles: insights from iron plaque formation, gene expression, and nanoparticle accumulation. Environ Sci Nano 9:4093–4103. https://doi.org/10.1039/D2EN00487A Jiménez JDLC, Clode PL, Signorelli S et al (2021) The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola. J Exp Bot 72:3279–3293. https://doi.org/10.1093/jxb/erab043 Kang Z, Zhang W, Qin J et al (2020) Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotoxicol Environ Saf 190:110102. https://doi.org/10.1016/j.ecoenv.2019.110102 Khan N, Seshadri B, Bolan N et al (2016) Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv Agron 138:1–96. https://doi.org/10.1016/bs.agron.2016.04.002 Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601–602:1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030 Kludze HK, DeLaune RD, Patrick WH (1994) A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots. Agron J 86:483–487. https://doi.org/10.2134/agronj1994.00021962008600030005x Lai Y, Xu B, He L et al (2012) Cadmium uptake by and translocation within rice (Oryza sativa L.) seedlings as affected by iron plaque and Fe2O3. Pak J Bot 44:1557–1561 Li J, Liu J, Yan C et al (2019) The alleviation effect of iron on cadmium phytotoxicity in mangrove A. marina. Alleviation effect of iron on cadmium phytotoxicity in mangrove Avicennia marina (Forsk.) Vierh. Chemosphere 226:413–420. https://doi.org/10.1016/j.chemosphere.2019.03.172 Limmer MA, Evans AE, Seyfferth AL (2021) A new method to capture the spatial and temporal heterogeneity of aquatic plant iron root plaque in situ. Environ Sci Technol 55:912–918. https://doi.org/10.1021/acs.est.0c02949 Lu R-R, Hu Z-H, Zhang Q-L et al (2020) The effect of Funneliformis mosseae on the plant growth, cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola Calendulacea. Ecotoxicol Environ Saf 203:110988. https://doi.org/10.1016/j.ecoenv.2020.110988 Mei XQ, Ye ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157:2550–2557. https://doi.org/10.1016/j.envpol.2009.02.037 Mei X, Li Q, Wang H et al (2020) Effects of cultivars, water regimes, and growth stages on cadmium accumulation in rice with different radial oxygen loss. Plant Soil 453:529–543. https://doi.org/10.1007/s11104-020-04634-w Nocito FF, Lancilli C, Dendena B et al (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation: cadmium retention in rice roots. Plant Cell Environ 34:994–1008. https://doi.org/10.1111/j.1365-3040.2011.02299.x Otte ML, Rozema J, Koster L et al (1989) Iron plaque on roots of Aster tripolium L.: Interaction with zinc uptake. New Phytol 111:309–317. https://doi.org/10.1111/j.1469-8137.1989.tb00694.x Pedersen O, Sauter M, Colmer TD, Nakazono M (2021) Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol 229:42–49. https://doi.org/10.1111/nph.16375 Qi X, Tam NF, Li WC, Ye Z (2020) The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Environ Pollut 264:114736. https://doi.org/10.1016/j.envpol.2020.114736 Tang L, Hamid Y, Liu D et al (2020) Foliar application of zinc and selenium alleviates cadmium and lead toxicity of water spinach – Bioavailability/cytotoxicity study with human cell lines. Environ Int 145:106122. https://doi.org/10.1016/j.envint.2020.106122 Tong S, Kjær JE, Peralta Ogorek LL et al (2023) Responses of key root traits in the genus Oryza to soil flooding mimicked by stagnant, deoxygenated nutrient solution. J Exp Bot 74:2112–2126. https://doi.org/10.1093/jxb/erad014 Uraguchi S, Mori S, Kuramata M et al (2009) Root-to-shoot cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688. https://doi.org/10.1093/jxb/erp119 Wang J, Yuan J, Yang Z et al (2009) Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk). J Agric Food Chem 57:8942–8949. https://doi.org/10.1021/jf900812s Wang X, Yao H, Wong MH, Ye Z (2013) Dynamic changes in radial oxygen loss and iron plaque formation and their effects on cd and as accumulation in rice (Oryza sativa L). Environ Geochem Health 35:779–788. https://doi.org/10.1007/s10653-013-9534-y Wang X, Li B, Tam NF-Y et al (2014) Radial oxygen loss has different effects on the accumulation of total mercury and methylmercury in rice. Plant Soil 385:343–355. https://doi.org/10.1007/s11104-014-2239-x Wu C, Ye Z, Li H et al (2012) Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J Exp Bot 63:2961–2970. https://doi.org/10.1093/jxb/ers017 Xiao Q, Wong MH, Huang L, Ye Z (2015) Effects of cultivars and water management on cadmium accumulation in water spinach (Ipomoea aquatica Forsk). Plant Soil 391:33–49. https://doi.org/10.1007/s11104-015-2409-5 Xiao A, Chen D, Li WC, Ye Z (2021) Root morphology and anatomy affect cadmium translocation and accumulation in rice. Rice Sci 28:594–604. https://doi.org/10.1016/j.rsci.2021.03.003 Xin J, Zhao X, Tan Q et al (2017) Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L). Ecotoxicol Environ Saf 145:258–265. https://doi.org/10.1016/j.ecoenv.2017.07.042 Xin J, Huang B, Yang Z et al (2013) Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) Cultivars. Plant Soil 372:431–444. https://doi.org/10.1007/s11104-013-1729-6 Xu Y, Sun X, Zhang Q et al (2018) Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions. Ecotoxicol Environ Saf 153:91–100. https://doi.org/10.1016/j.ecoenv.2018.02.008 Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176:1118–1130. https://doi.org/10.1104/pp.17.01157 Yang J, Zheng G, Yang J et al (2017) Phytoaccumulation of heavy metals (pb, zn, and cd) by 10 wetland plant species under different hydrological regimes. Ecol Eng 107:56–64. https://doi.org/10.1016/j.ecoleng.2017.06.052 Yuan P, Peng C, Shi J et al (2021) Ferrous ions inhibit Cu uptake and accumulation via inducing iron plaque and regulating the metabolism of rice plants exposed to CuO nanoparticles. Environ Sci Nano 8:1456–1468. https://doi.org/10.1039/D0EN01241F Zandi P, Yang J, Darma A et al (2022) Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L). Environ Geochem Health. https://doi.org/10.1007/s10653-022-01246-4 Zandi P, Xia X, Yang J et al (2023) Speciation and distribution of chromium (III) in rice root tip and mature zone: the significant impact of root exudation and iron plaque on chromium bioavailability. J Hazard Mater 448:130992. https://doi.org/10.1016/j.jhazmat.2023.130992 Zhang S, Ni X, Arif M et al (2020) Salinity influences cd accumulation and distribution characteristics in two contrasting halophytes, Suaeda Glauca and Limonium Aureum. Ecotoxicol Environ Saf 191:110230. https://doi.org/10.1016/j.ecoenv.2020.110230 Zhang F, Peng D, Liu L et al (2022) Cultivar-dependent rhizobacteria community and cadmium accumulation in rice: effects on cadmium availability in soils and iron-plaque formation. J Environ Sci 116:90–102. https://doi.org/10.1016/j.jes.2021.08.021 Zhao F-J, Ma Y, Zhu Y-G et al (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759. https://doi.org/10.1021/es5047099 Zhong S, Li X, Li F et al (2021) Water management alters cadmium isotope fractionation between shoots and nodes/leaves in a soil-rice system. Environ Sci Technol 55:12902–12913. https://doi.org/10.1021/acs.est.0c04713