RHO GTPase family in hepatocellular carcinoma
Tóm tắt
Từ khóa
Tài liệu tham khảo
Madaule P, Axel R. A novel ras-related gene family. Cell. 1985;41(1):31–40. https://doi.org/10.1016/0092-8674(85)90058-3.
Aelst LV, Souza-Schorey CD. Rho GTPases and signaling networks. Genes Dev. 1997;11(18):2295–322. https://doi.org/10.1101/gad.11.18.2295.
Ridley AJ, Paterson HF, Johnston CL, et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992;70(3):401–10. https://doi.org/10.1016/0092-8674(92)90164-8.
Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389–99. https://doi.org/10.1016/0092-8674(92)90163-7.
Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81(1):53–62. https://doi.org/10.1016/0092-8674(95)90370-4.
Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69. https://doi.org/10.1146/annurev.cellbio.21.020604.150721.
Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5. https://doi.org/10.1038/ng.2916.
Nguyen H, Chiasson VL, Chatterjee P, et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013;97(4):696–704. https://doi.org/10.1093/cvr/cvs422.
Malmhall-Bah E, Andersson KME, Erlandsson MC, et al. Rho-GTPase dependent leukocyte interaction generates pro-inflammatory thymic Tregs and causes arthritis. J Autoimmun. 2022;130:102843. https://doi.org/10.1016/j.jaut.2022.102843.
Medavaram S, Zhang Y. Emerging therapies in advanced hepatocellular carcinoma. Exp Hematol Oncol. 2018;7:17. https://doi.org/10.1186/s40164-018-0109-6.
Grise F, Bidaud A, Moreau V. Rho GTPases in hepatocellular carcinoma. Biochim Biophys Acta. 2009;1795(2):137–51. https://doi.org/10.1016/j.bbcan.2008.12.003.
Jung H, Yoon SR, Lim J, et al. Dysregulation of Rho GTPases in Human Cancers. Cancers. 2020. https://doi.org/10.3390/cancers12051179.
Clayton NS, Ridley AJ. Targeting Rho GTPase signaling networks in cancer. Front Cell Dev Biol. 2020;8:222. https://doi.org/10.3389/fcell.2020.00222.
Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17(8):496–510. https://doi.org/10.1038/nrm.2016.67.
Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol. 2007;24(1):203–16. https://doi.org/10.1093/molbev/msl145.
Haga RB, Ridley AJ. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. 2016;7(4):207–21. https://doi.org/10.1080/21541248.2016.1232583.
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells. 2021. https://doi.org/10.3390/cells10071831.
Roberts PJ, Mitin N, Keller PJ, et al. Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem. 2008;283(37):25150–63. https://doi.org/10.1074/jbc.M800882200.
Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9(9):690–701. https://doi.org/10.1038/nrm2476.
Aspenstrom P. Fast-cycling Rho GTPases. Small GTPases. 2020;11(4):248–55. https://doi.org/10.1080/21541248.2017.1391365.
Chardin P. Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol. 2006;7(1):54–62. https://doi.org/10.1038/nrm1788.
Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–77. https://doi.org/10.1016/j.cell.2007.05.018.
Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6(2):167–80. https://doi.org/10.1038/nrm1587.
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene. 2014;33(31):4021–35. https://doi.org/10.1038/onc.2013.362.
Satoh T. Diverse physiological functions and regulatory mechanisms for signal-transducing small GTPases. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197291.
Tsai MH, Hall A, Stacey DW. Inhibition by phospholipids of the interaction between R-ras, rho, and their GTPase-activating proteins. Mol Cell Biol. 1989;9(11):5260–4. https://doi.org/10.1128/mcb.9.11.5260-5264.1989.
Garcia-Mata R, Boulter E, Burridge K. The “invisible hand”: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol. 2011;12(8):493–504. https://doi.org/10.1038/nrm3153.
de Leon-Bautista MP, Cardenas-Aguayo MD, Casique-Aguirre D, et al. Immunological and functional characterization of RhoGDI3 and its molecular targets RhoG and RhoB in human pancreatic cancerous and normal cells. PLoS ONE. 2016;11(11):e0166370. https://doi.org/10.1371/journal.pone.0166370.
Keep NH, Barnes M, Barsukov I, et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure. 1997;5(5):623–33. https://doi.org/10.1016/s0969-2126(97)00218-9.
Boulter E, Garcia-Mata R, Guilluy C, et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol. 2010;12(5):477–83. https://doi.org/10.1038/ncb2049.
Golding AE, Visco I, Bieling P, et al. Extraction of active RhoGTPases by RhoGDI regulates spatiotemporal patterning of RhoGTPases. Elife. 2019;12(5):864.
Liu M, Bi F, Zhou X, et al. Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol. 2012;22(7):365–73. https://doi.org/10.1016/j.tcb.2012.04.004.
Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol. 2018. https://doi.org/10.1101/cshperspect.a018267.
Rohatgi R, Ma L, Miki H, et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell. 1999;97(2):221–31. https://doi.org/10.1016/s0092-8674(00)80732-1.
Hurd TW, Gao L, Roh MH, et al. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol. 2003;5(2):137–42. https://doi.org/10.1038/ncb923.
Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal. 2013;25(10):1955–61. https://doi.org/10.1016/j.cellsig.2013.04.009.
Kage F, Winterhoff M, Dimchev V, et al. FMNL formins boost lamellipodial force generation. Nat Commun. 2017;8:14832. https://doi.org/10.1038/ncomms14832.
Zihni C, Vlassaks E, Terry S, et al. An apical MRCK-driven morphogenetic pathway controls epithelial polarity. Nat Cell Biol. 2017;19(9):1049–60. https://doi.org/10.1038/ncb3592.
Whitelaw JA, Swaminathan K, Kage F, et al. The WAVE regulatory complex is required to balance protrusion and adhesion in migration. Cells. 2020. https://doi.org/10.3390/cells9071635.
Laurin M, Cote JF. Insights into the biological functions of dock family guanine nucleotide exchange factors. Genes Dev. 2014;28(6):533–47. https://doi.org/10.1101/gad.236349.113.
Thomas A, Mariani-Floderer C, Lopez-Huertas MR, et al. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag particle release in CD4 T cells. J Virol. 2015;89(16):8162–81. https://doi.org/10.1128/JVI.00469-15.
Fregoso FE, van Eeuwen T, Simanov G, et al. Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nat Commun. 2022;13(1):628. https://doi.org/10.1038/s41467-022-28112-2.
Law AL, Vehlow A, Kotini M, et al. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol. 2013;203(4):673–89. https://doi.org/10.1083/jcb.201304051.
Edwards DC, Sanders LC, Bokoch GM, et al. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999;1(5):253–9. https://doi.org/10.1038/12963.
Machacek M, Hodgson L, Welch C, et al. Coordination of Rho GTPase activities during cell protrusion. Nature. 2009;461(7260):99–103. https://doi.org/10.1038/nature08242.
Chauhan BK, Lou M, Zheng Y, et al. Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia. Proc Natl Acad Sci USA. 2011;108(45):18289–94. https://doi.org/10.1073/pnas.1108993108.
Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases. 2014;5:e29846. https://doi.org/10.4161/sgtp.29846.
Geneste O, Copeland JW, Treisman R. LIM kinase and diaphanous cooperate to regulate serum response factor and actin dynamics. J Cell Biol. 2002;157(5):831–8. https://doi.org/10.1083/jcb.200203126.
Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245–8. https://doi.org/10.1126/science.273.5272.245.
Watanabe N, Kato T, Fujita A, et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol. 1999;1(3):136–43. https://doi.org/10.1038/11056.
Watanabe N, Madaule P, Reid T, et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 1997;16(11):3044–56. https://doi.org/10.1093/emboj/16.11.3044.
Liu J, Wada Y, Katsura M, et al. Rho-associated coiled-coil kinase (ROCK) in molecular regulation of angiogenesis. Theranostics. 2018;8(21):6053–69. https://doi.org/10.7150/thno.30305.
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8. https://doi.org/10.1172/JCI39104.
Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol. 2019;20(12):738–52. https://doi.org/10.1038/s41580-019-0172-9.
Sanz-Moreno V, Gadea G, Ahn J, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135(3):510–23. https://doi.org/10.1016/j.cell.2008.09.043.
Saito K, Ozawa Y, Hibino K, et al. FilGAP, a Rho/Rho-associated protein kinase-regulated GTPase-activating protein for Rac, controls tumor cell migration. Mol Biol Cell. 2012;23(24):4739–50. https://doi.org/10.1091/mbc.E12-04-0310.
Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 2003;5(8):711–9. https://doi.org/10.1038/ncb1019.
Wang Q, Yang X, Ying Xu, et al. RhoA/Rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis. Oncotarget. 2018;9(18):14397–412.
Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. https://doi.org/10.1038/nrc.2016.138.
Kim JG, Kim MJ, Choi WJ, et al. Wnt3A induces GSK-3beta Phosphorylation and beta-catenin accumulation through RhoA/ROCK. J Cell Physiol. 2017;232(5):1104–13. https://doi.org/10.1002/jcp.25572.
Bassi ZI, Verbrugghe KJ, Capalbo L, et al. Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis. J Cell Biol. 2011;195(4):595–603. https://doi.org/10.1083/jcb.201105136.
Mettouchi A, Klein S, Guo W, et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol Cell. 2001;8(1):115–27. https://doi.org/10.1016/s1097-2765(01)00285-4.
Whalley HJ, Porter AP, Diamantopoulou Z, et al. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat Commun. 2015;6:7437. https://doi.org/10.1038/ncomms8437.
Perona R, Montaner S, Saniger L, et al. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 1997;11(4):463–75. https://doi.org/10.1101/gad.11.4.463.
Cuadrado A, Martin-Moldes Z, Ye J, et al. Transcription factors NRF2 and NF-kappaB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem. 2014;289(22):15244–58. https://doi.org/10.1074/jbc.M113.540633.
Chou MM, Blenis J. The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell. 1996;85(4):573–83. https://doi.org/10.1016/s0092-8674(00)81257-x.
Campa CC, Ciraolo E, Ghigo A, et al. 2015 Crossroads of PI3K and Rac pathways. Small GTPases. 2014. https://doi.org/10.4161/21541248989789.
Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, et al. Targeting macrophage-mediated tumor cell phagocytosis: an overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol. 2022;103:108499. https://doi.org/10.1016/j.intimp.2021.108499.
Diekmann D, Abo A, Johnston C, et al. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science. 1994;265(5171):531–3. https://doi.org/10.1126/science.8036496.
Jiang JX, Mikami K, Shah VH, et al. Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism. Hepatology. 2008;48(5):1497–505. https://doi.org/10.1002/hep.22515.
Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92(10–11):303–15. https://doi.org/10.1016/j.ejcb.2013.09.002.
Tao W, Pennica D, Xu L, et al. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev. 2001;15(14):1796–807. https://doi.org/10.1101/gad.894301.
Stern S, Hilton BJ, Burnside ER, et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron. 2021;109(21):3436-3455.e9. https://doi.org/10.1016/j.neuron.2021.08.014.
Takenaka N, Nakao M, Matsui S, et al. A crucial role for the small GTPase Rac1 downstream of the protein kinase Akt2 in insulin signaling that regulates glucose uptake in mouse adipocytes. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215443.
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
Galle PR, Forner A, Llovet JM, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019.
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. https://doi.org/10.1038/s41572-020-00240-3.
Craig AJ, von Felden J, Garcia-Lezana T, et al. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17(3):139–52. https://doi.org/10.1038/s41575-019-0229-4.
Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. https://doi.org/10.1038/s41575-019-0186-y.
Qin S, Bi F, Shanzhi G, et al. Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial. J Clin Oncol. 2021;39(27):3002–11. https://doi.org/10.1200/JCO.21.00163.
Zhu XD, Sun HC. Emerging agents and regimens for hepatocellular carcinoma. J Hematol Oncol. 2019;12(1):110. https://doi.org/10.1186/s13045-019-0794-6.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74. https://doi.org/10.1038/nrc1075.
Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol. 2015;36:103–12. https://doi.org/10.1016/j.ceb.2015.08.005.
Chen X, Zhang S, Wang Z, et al. Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. J Exp Clin Cancer Res. 2018;37(1):128. https://doi.org/10.1186/s13046-018-0787-2.
Bai Yi, Xie F, Miao F, et al. The diagnostic and prognostic role of RhoA in hepatocellular carcinoma. Aging. 2019;11(14):5158–72. https://doi.org/10.18632/aging.102110.
Wang D, Dou K, Xiang H, et al. Involvement of RhoA in progression of human hepatocellular carcinoma. J Gastroenterol Hepatol. 2007;22(11):1916–20. https://doi.org/10.1111/j.1440-1746.2006.04534.x.
Du Y, Shan Lu, Ge J, et al. ROCK2 disturbs MKP1 expression to promote invasion and metastasis in hepatocellular carcinoma. Am J Cancer Res. 2020;10(3):884–96.
Huang D, Du X, Yuan R, et al. Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation. Biochem Biophys Res Commun. 2014;453(1):49–56. https://doi.org/10.1016/j.bbrc.2014.09.061.
Zhan Y, Zheng NX, Teng F, et al. MiR-199a/b-5p inhibits hepatocellular carcinoma progression by post-transcriptionally suppressing ROCK1. Oncotarget. 2017;8(40):67169–80. https://doi.org/10.18632/oncotarget.18052.
Li CF, Chen JY, Ho YH, et al. Snail-induced claudin-11 prompts collective migration for tumour progression. Nat Cell Biol. 2019;21(2):251–62. https://doi.org/10.1038/s41556-018-0268-z.
Liao CG, Kong LM, Zhou P, et al. miR-10b is overexpressed in hepatocellular carcinoma and promotes cell proliferation, migration and invasion through RhoC, uPAR and MMPs. J Transl Med. 2014;12:234. https://doi.org/10.1186/s12967-014-0234-x.
Zhang YL, Li Q, Yang XM, et al. SPON2 promotes M1-like macrophage recruitment and inhibits hepatocellular carcinoma metastasis by distinct integrin-Rho GTPase-Hippo pathways. Cancer Res. 2018;78(9):2305–17. https://doi.org/10.1158/0008-5472.CAN-17-2867.
Zhang YL, Xing X, Cai LB, et al. Integrin alpha9 suppresses hepatocellular carcinoma metastasis by Rho GTPase signaling. J Immunol Res. 2018;2018:4602570. https://doi.org/10.1155/2018/4602570.
Lee TK, Man K, Ho JW, et al. Significance of the Rac signaling pathway in HCC cell motility: implications for a new therapeutic target. Carcinogenesis. 2005;26(3):681–7. https://doi.org/10.1093/carcin/bgi002.
Wang SJ, Cui H-Y, Liu Y-M, et al. promotes Src-dependent activation of Rac1 signaling through during the motility of hepatocellular carcinoma cells. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.2801.
Zhang L, Zhang B, You W, et al. Rab23 promotes hepatocellular carcinoma cell migration Via Rac1/TGF-beta signaling. Pathol Oncol Res. 2020;26(1):301–6. https://doi.org/10.1007/s12253-018-0463-z.
Gudino V, Pohl SO, Billard CV, et al. RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways. Nat Commun. 2021;12(1):2335. https://doi.org/10.1038/s41467-021-22531-3.
Gudino V, Cammareri P, Billard CV, et al. Negative regulation of TGFbeta-induced apoptosis by RAC1B enhances intestinal tumourigenesis. Cell Death Dis. 2021;12(10):873. https://doi.org/10.1038/s41419-021-04177-7.
Ungefroren H, Kumarasinghe A, Musfeldt M, et al. RAC1B Induces SMAD7 via USP26 to suppress TGFbeta 1-dependent cell migration in mesenchymal-subtype carcinoma cells. Cancers. 2020. https://doi.org/10.3390/cancers12061545.
Dai B, Zhang X, Shang R, et al. Blockade of ARHGAP11A reverses malignant progress via inactivating Rac1B in hepatocellular carcinoma. Cell Commun Signal. 2018;16(1):99. https://doi.org/10.1186/s12964-018-0312-4.
van Hengel J, D’Hooge P, Hooghe B, et al. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroenterology. 2008;134(3):781–92. https://doi.org/10.1053/j.gastro.2008.01.002.
Zhang J, Yang C, Gong L, et al. RICH2, a potential tumor suppressor in hepatocellular carcinoma. Front Biosci. 2019;24(8):1363–76. https://doi.org/10.2741/4784.
Lopez-Luque J, Bertran E, Crosas-Molist E, et al. Downregulation of Epidermal growth factor receptor in hepatocellular carcinoma facilitates transforming growth factor-beta-induced epithelial to amoeboid transition. Cancer Lett. 2019;464:15–24. https://doi.org/10.1016/j.canlet.2019.08.011.
Yang X, Liu Z, Li Y, et al. Rab5a promotes the migration and invasion of hepatocellular carcinoma by up-regulating Cdc42. Int J Clin Exp Pathol. 2018;11(1):224–31.
Zhang Q, Chen Y, Liu K. miR-185 inhibits cell migration and invasion of hepatocellular carcinoma through CDC42. Oncol Lett. 2018;16(3):3101–7. https://doi.org/10.3892/ol.2018.8971.
Rane CK, Minden A. P21 activated kinase signaling in cancer. Semin Cancer Biol. 2019;54:40–9. https://doi.org/10.1016/j.semcancer.2018.01.006.
Xu HT, Lai W-L, Liu H-F, et al. PAK4 Phosphorylates p53 at Serine 215 to promote liver cancer metastasis. Cancer Res. 2016. https://doi.org/10.1158/0008-5472.CAN-15-3373.
Zhou Y, Fan RG, Qin CL, et al. LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics. 2019;111(6):1862–72. https://doi.org/10.1016/j.ygeno.2018.12.009.
Ji X, Chen X, Zhang B, et al. T-box transcription factor 19 promotes hepatocellular carcinoma metastasis through upregulating EGFR and RAC1. Oncogene. 2022. https://doi.org/10.1038/s41388-022-02249-2.
Lopez-Colome AM, Lee-Rivera I, Benavides-Hidalgo R, et al. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol. 2017;10(1):50. https://doi.org/10.1186/s13045-017-0418-y.
Li S, Liu Y, Bai Y, et al. Ras Homolog family member F, Filopodia associated promotes hepatocellular carcinoma metastasis by altering the metabolic status of cancer cells through RAB3D. Hepatology. 2021;73(6):2361–79. https://doi.org/10.1002/hep.31641.
Qin CD, Ma DN, Zhang SZ, et al. The Rho GTPase Rnd1 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma and is a favorable anti-metastasis target. Cell Death Dis. 2018;9(5):486. https://doi.org/10.1038/s41419-018-0517-x.
Tang J, Liu C, Xu B, et al. ARHGEF10L contributes to liver tumorigenesis through RhoA-ROCK1 signaling and the epithelial-mesenchymal transition. Exp Cell Res. 2019;374(1):46–68. https://doi.org/10.1016/j.yexcr.2018.11.007.
Zhou J, Zhang Y, Qi Y, et al. MicroRNA-152 inhibits tumor cell growth by directly targeting RTKN in hepatocellular carcinoma. Oncol Rep. 2017;37(2):1227–34. https://doi.org/10.3892/or.2016.5290.
Wei W, Chen H, Liu S. Knockdown of Rhotekin 2 expression suppresses proliferation and invasion and induces apoptosis in hepatocellular carcinoma cells. Mol Med Rep. 2016;13(6):4865–71. https://doi.org/10.3892/mmr.2016.5113.
Yang XM, Cao XY, He P, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing hippo signaling to promote cytokinesis. Gastroenterology. 2018;155(4):1233–49. https://doi.org/10.1053/j.gastro.2018.07.010.
Ohrnberger S, Thavamani A, Braeuning A, et al. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology. 2015;61(3):979–89. https://doi.org/10.1002/hep.27539.
Zhang L, Zhou H, Wei G. miR-506 regulates cell proliferation and apoptosis by affecting RhoA/ROCK signaling pathway in hepatocellular carcinoma cells. Int J Clin Exp Pathol. 2019;12(4):1163.
Wang MY, Chen DP, Qi B, et al. Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis. 2019;10(6):426. https://doi.org/10.1038/s41419-019-1666-2.
Xie S, Zhu M, Lv G, et al. The role of RhoC in the proliferation and apoptosis of hepatocellular carcinoma cells. Med Oncol. 2012;29(3):1802–9. https://doi.org/10.1007/s12032-011-0003-0.
Yue X, Wu F, Li Y, et al. Gain of function mutant p53 protein activates AKT through the Rac1 signaling to promote tumorigenesis. Cell Cycle. 2020;19(11):1338–51. https://doi.org/10.1080/15384101.2020.1749790.
Jiang ZB, Ma BQ, Liu SG, et al. miR-365 regulates liver cancer stem cells via RAC1 pathway. Mol Carcinog. 2019;58(1):55–65. https://doi.org/10.1002/mc.22906.
Ran RZ, Chen J, Cui LJ, et al. miR-194 inhibits liver cancer stem cell expansion by regulating RAC1 pathway. Exp Cell Res. 2019;378(1):66–75. https://doi.org/10.1016/j.yexcr.2019.03.007.
Zhang DG, Zhang J, Mao LL, et al. p21-Activated kinase 5 affects cisplatin-induced apoptosis and proliferation in hepatocellular carcinoma cells. Tumour Biol. 2015;36(5):3685–91. https://doi.org/10.1007/s13277-014-3007-5.
Basbous S, Paysan L, Sena S, et al. Silencing of RND3/RHOE inhibits the growth of human hepatocellular carcinoma and is associated with reversible senescence. Cancer Gene Ther. 2022. https://doi.org/10.1038/s41417-022-00445-6.
Ghosh K, Thodeti CK, Dudley AC, et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci USA. 2008;105(32):11305–10. https://doi.org/10.1073/pnas.0800835105.
Sun C, Hu A, Wang S, et al. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol. 2020;57(1):249–63. https://doi.org/10.3892/ijo.2020.5045.
Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions. FEBS Lett. 2018;592(11):1763–76. https://doi.org/10.1002/1873-3468.13087.
Zhang JG, Zhang DD, Liu Y, et al. RhoC/ROCK2 promotes vasculogenic mimicry formation primarily through ERK/MMPs in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1113–25. https://doi.org/10.1016/j.bbadis.2018.12.007.
Wang W, Wu F, Fang F, et al. RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci. 2008;99(10):2012–8. https://doi.org/10.1111/j.1349-7006.2008.00902.x.
Jin L, Liu W-R, Tian M-n, et al. CCL24 contributes to HCC malignancy via angiogenesis pathway and indicates poor prognosis. Oncotarget. 2017;8(3):5135–514. https://doi.org/10.18632/oncotarget.14095.
Liu Y, Zhang W, Wang S, et al. Cullin3-TNFAIP1 E3 ligase controls inflammatory response in hepatocellular carcinoma cells via ubiquitination of RhoB. Front Cell Dev Biol. 2021;9:617134. https://doi.org/10.3389/fcell.2021.617134.
Zhang JG, Zhou HM, Zhang X, et al. Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 alpha, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer. 2020;20(1):32. https://doi.org/10.1186/s12885-019-6501-8.
Diepstraten ST, Anderson MA, Czabotar PE, et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22(1):45–64. https://doi.org/10.1038/s41568-021-00407-4.
Ma W, Sze KM, Chan LK, et al. RhoE/ROCK2 regulates chemoresistance through NF-κB/IL-6/ STAT3 signaling in hepatocellular carcinoma. Oncotarget. 2016;7(27):41445–59. https://doi.org/10.18632/oncotarget.9441.
Chen J, Xia H, Zhang X, et al. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma. J Hepatol. 2015;62(6):1287–95. https://doi.org/10.1016/j.jhep.2015.01.014.
Perini GF, Ribeiro GN, Pinto Neto JV, et al. BCL-2 as therapeutic target for hematological malignancies. J Hematol Oncol. 2018;11(1):65. https://doi.org/10.1186/s13045-018-0608-2.
Gray JL, von Delft F, Brennan PE. Targeting the small GTPase superfamily through their regulatory proteins. Angew Chem Int Ed Engl. 2020;59(16):6342–66. https://doi.org/10.1002/anie.201900585.
Sun Z, Zhang H, Zhang Y, et al. covalent inhibitors allosterically block the activation of rho family proteins and suppress cancer cell invasion. Adv Sci (Weinh). 2020;7(14):2000098. https://doi.org/10.1002/advs.202000098.
Shutes A, Onesto C, Picard V, et al. Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem. 2007;282(49):35666–78. https://doi.org/10.1074/jbc.M703571200.
Peretti AS, Dominguez D, Grimes MM, et al. The R-enantiomer of ketorolac delays mammary tumor development in mouse mammary tumor virus-polyoma middle T Antigen (MMTV-PyMT) mice. Am J Pathol. 2018;188(2):515–24. https://doi.org/10.1016/j.ajpath.2017.10.018.
Hong L, Kenney SR, Phillips GK, et al. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem. 2013;288(12):8531–43. https://doi.org/10.1074/jbc.M112.435941.
Lin Y, Zheng Y. Approaches of targeting Rho GTPases in cancer drug discovery. Expert Opin Drug Discov. 2015;10(9):991–1010. https://doi.org/10.1517/17460441.2015.1058775.
Brandt AC, Koehn OJ, Williams CL. SmgGDS: An emerging master regulator of prenylation and trafficking by small GTPases in the Ras and Rho families. Front Mol Biosci. 2021;8: 685135. https://doi.org/10.3389/fmolb.2021.685135.
Tanaka S, Fukumoto Y, Nochioka K, et al. Statins exert the pleiotropic effects through small GTP-binding protein dissociation stimulator upregulation with a resultant Rac1 degradation. Arterioscler Thromb Vasc Biol. 2013;33(7):1591–600. https://doi.org/10.1161/ATVBAHA.112.300922.
Al-Haidari AA, Syk I, Thorlacius H. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation. Biochem Biophys Res Commun. 2014;446(1):68–72. https://doi.org/10.1016/j.bbrc.2014.02.078.
Feng Y, LoGrasso PV, Defert O, et al. Rho kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem. 2016;59(6):2269–300. https://doi.org/10.1021/acs.jmedchem.5b00683.
Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285(5429):895–8. https://doi.org/10.1126/science.285.5429.895.
Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4. https://doi.org/10.1038/40187.
Takamura M, Sakamoto M, Genda T, et al. Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology. 2001;33(3):577–81. https://doi.org/10.1053/jhep.2001.22652.
Hartmann DA, Berthiaume AA, Grant RI, et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci. 2021;24(5):633–45. https://doi.org/10.1038/s41593-020-00793-2.
Zhao Y, Zhang Y, Vazirinejad Mehdiabad M, et al. Enhanced anti-tumor effect of liposomal Fasudil on hepatocellular carcinoma in vitro and in vivo. PLoS ONE. 2019;14(10):e0223232. https://doi.org/10.1371/journal.pone.0223232.
Rath N, Munro J, Cutiongco MF, et al. Rho kinase inhibition by AT13148 blocks pancreatic ductal adenocarcinoma invasion and tumor growth. Cancer Res. 2018;78(12):3321–36. https://doi.org/10.1158/0008-5472.CAN-17-1339.
Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O’Farrill E, et al. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol Cancer Ther. 2017;16(5):805–18. https://doi.org/10.1158/1535-7163.MCT-16-0442.
Unbekandt M, Belshaw S, Bower J, et al. Discovery of potent and selective mrck inhibitors with therapeutic effect on skin cancer. Cancer Res. 2018;78(8):2096–114. https://doi.org/10.1158/0008-5472.CAN-17-2870.
Gao Y, Bradley Dickerson J, Guo F, et al. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA. 2004;101(2):7618–23. https://doi.org/10.1073/pnas.0307512101.
Li D, Ding X, Xie M, et al. CAMSAP2-mediated noncentrosomal microtubule acetylation drives hepatocellular carcinoma metastasis. Theranostics. 2020;10(8):3749–66. https://doi.org/10.7150/thno.42596.
Chang CY, Lin SC, Su WH, et al. Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma. Oncogene. 2012;31(21):2640–52. https://doi.org/10.1038/onc.2011.440.
Montalvo-Ortiz BL, Castillo-Pichardo L, Hernandez E, et al. Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J Biol Chem. 2012;287(16):13228–38. https://doi.org/10.1074/jbc.M111.334524.
Bayo J, Fiore EJ, Dominguez LM, et al. Bioinformatic analysis of RHO family of GTPases identifies RAC1 pharmacological inhibition as a new therapeutic strategy for hepatocellular carcinoma. Gut. 2021;70(7):1362–74. https://doi.org/10.1136/gutjnl-2020-321454.
Shang X, Marchioni F, Sipes N, et al. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol. 2012;19(6):699–710. https://doi.org/10.1016/j.chembiol.2012.05.009.