REDOX Reaction at ASK1-Cys250 Is Essential for Activation of JNK and Induction of Apoptosis

Molecular Biology of the Cell - Tập 20 Số 16 - Trang 3628-3637 - 2009
Paul Nadeau1, Steve J. Charette2, Jacques Landry1
1*Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec, Canada, G1R 2J6; and
2Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (Centre de recherche Hôpital Laval), Pavillon Mallet (bureau M2689), Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), Québec, Canada, G1V 4G5

Tóm tắt

ASK1 cysteine oxidation allows JNK activation upon oxidative stress. Trx1 negatively regulates this pathway by reducing the oxidized cysteines of ASK1. However, precisely how oxidized ASK1 is involved in JNK activation and how Trx1 regulates ASK1 oxidoreduction remains elusive. Here, we describe two different thiol reductase activities of Trx1 on ASK1. First, in H2O2-treated cells, Trx1 reduces the various disulfide bonds generated between cysteines of ASK1 by a rapid and transient action. Second, in untreated cells, Trx1 shows a more stable thiol reductase activity on cysteine 250 (Cys250) of ASK1. After H2O2treatment, Trx1 dissociates from Cys250, which is not sufficient to activate the ASK1-JNK pathway. Indeed, in untreated cells, a Cys250 to alanine mutant of ASK1 (C250A), which cannot bind Trx1, does not constitutively activate JNK. On the other hand, in H2O2-treated cells, this mutant (C250A) fails to activate JNK and does not induce apoptosis, although it remains fully phosphorylated on Threonine 838 (Thr838) in its activation loop. Overall, our data show that Cys250 is essential for H2O2-dependent signaling downstream from ASK1 but at a step subsequent to the phosphorylation of ASK1 Thr838. They also clarify the thiol reductase function of Trx1 on ASK1 activity.

Từ khóa


Tài liệu tham khảo

Chang H. Y., 1998, Science, 281, 1860, 10.1126/science.281.5384.1860

Chen Z., 1999, Oncogene, 18, 173, 10.1038/sj.onc.1202276

Cross J. V., 2004, Biochem. J, 381, 675, 10.1042/BJ20040591

D'Autreaux B., 2007, Nat. Rev. Mol. Cell Biol, 8, 813, 10.1038/nrm2256

Dorion S., 2002, J. Biol. Chem, 277, 30792, 10.1074/jbc.M203642200

Fujii K., 2004, Oncogene, 23, 5099, 10.1038/sj.onc.1207668

Fujino G., 2007, Mol. Cell. Biol, 27, 8152, 10.1128/MCB.00227-07

Goldman E. H., 2004, J. Biol. Chem, 279, 10442, 10.1074/jbc.M311129200

Gotoh Y., 1998, J. Biol. Chem, 273, 17477, 10.1074/jbc.273.28.17477

Haendeler J., 2006, Antioxid Redox Signal, 8, 1723, 10.1089/ars.2006.8.1723

Holmgren A., 1995, Structure, 3, 239, 10.1016/S0969-2126(01)00153-8

Ichijo H., 1997, Science, 275, 90, 10.1126/science.275.5296.90

Iriyama T., 2009, EMBO J, 28, 843, 10.1038/emboj.2009.32

Kadowaki H., 2005, Cell Death Differ, 12, 19, 10.1038/sj.cdd.4401528

Kim A. H., 2001, Mol. Cell. Biol, 21, 893, 10.1128/MCB.21.3.893-901.2001

Landry J., 1989, J. Cell Biol, 109, 7, 10.1083/jcb.109.1.7

Laurent T. C., 1964, J. Biol. Chem, 239, 3436, 10.1016/S0021-9258(18)97742-2

Lee S. R., 2002, J. Biol. Chem, 277, 20336, 10.1074/jbc.M111899200

Liu H., 2000, Mol. Cell. Biol, 20, 2198, 10.1128/MCB.20.6.2198-2208.2000

Liu Y., 2002, Circ. Res, 90, 1259, 10.1161/01.RES.0000022160.64355.62

Matthews J. R., 1992, Nucleic Acids Res, 20, 3821, 10.1093/nar/20.15.3821

Meuillet E. J., 2004, Arch Biochem. Biophys, 429, 123, 10.1016/j.abb.2004.04.020

Mukherjee A., 2008, Br. J. Radiol, 81, S57, 10.1259/bjr/34180435

10.1091/mbc.e07-05-0491

Nishitoh H., 2002, Genes Dev, 16, 1345, 10.1101/gad.992302

Nishitoh H., 1998, Mol. Cell, 2, 389, 10.1016/S1097-2765(00)80283-X

Noguchi K., 2001, Biochem. Biophys. Res. Commun, 281, 1313, 10.1006/bbrc.2001.4498

Noguchi T., 2008, J. Biol. Chem, 283, 7657, 10.1074/jbc.M708402200

Noguchi T., 2005, J. Biol. Chem, 280, 37033, 10.1074/jbc.M506771200

Park H. S., 2002, Mol. Cell. Biol, 22, 7721, 10.1128/MCB.22.22.7721-7730.2002

Park H. S., 2004, J. Biol. Chem, 279, 7584, 10.1074/jbc.M304183200

Powis G., 2001, Annu Rev. Biophys. Biomol. Struct, 30, 421, 10.1146/annurev.biophys.30.1.421

Saadatzadeh M. R., 2004, J. Biol. Chem, 279, 16805, 10.1074/jbc.M313721200

Saitoh M., 1998, EMBO J, 17, 2596, 10.1093/emboj/17.9.2596

Schwertassek U., 2007, EMBO J, 26, 3086, 10.1038/sj.emboj.7601746

Song J. J., 2003, J. Cell. Biochem, 90, 304, 10.1002/jcb.10619

Song J. J., 2003, Biochem. J, 373, 845, 10.1042/bj20030275

Song J. J., 2002, J. Biol. Chem, 277, 46566, 10.1074/jbc.M206826200

Stone J. R., 2006, Antioxid. Redox. Signal, 8, 243, 10.1089/ars.2006.8.243

Tobiume K., 2001, EMBO Rep, 2, 222, 10.1093/embo-reports/kve046

Tobiume K., 2002, J. Cell. Physiol, 191, 95, 10.1002/jcp.10080

Watanabe T., 2005, Biochem. Biophys. Res. Commun, 333, 562, 10.1016/j.bbrc.2005.05.151

Zhang L., 1999, Proc. Natl. Acad Sci. USA, 96, 8511, 10.1073/pnas.96.15.8511

Zhang H., 2004, J. Biol. Chem, 279, 44955, 10.1074/jbc.M407617200

Zhang R., 2004, Circ Res, 94, 1483, 10.1161/01.RES.0000130525.37646.a7

Zhang W., 2005, J. Biol. Chem, 280, 19036, 10.1074/jbc.M414674200