Quorum Sensing and Quorum Quenching in Agrobacterium: A “Go/No Go System”?

Genes - Tập 9 Số 4 - Trang 210
Yves Dessaux1, Denis Faure1
1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif sur Yvette CEDEX, France

Tóm tắt

The pathogen Agrobacterium induces gall formation on a wide range of dicotyledonous plants. In this bacteria, most pathogenicity determinants are borne on the tumour inducing (Ti) plasmid. The conjugative transfer of this plasmid between agrobacteria is regulated by quorum sensing (QS). However, processes involved in the disturbance of QS also occur in this bacteria under the molecular form of a protein, TraM, inhibiting the sensing of the QS signals, and two lactonases BlcC (AttM) and AiiB that degrade the acylhomoserine lactone (AHL) QS signal. In the model Agrobacterium fabrum strain C58, several data, once integrated, strongly suggest that the QS regulation may not be reacting only to cell concentration. Rather, these QS elements in association with the quorum quenching (QQ) activities may constitute an integrated and complex “go/no go system” that finely controls the biologically costly transfer of the Ti plasmid in response to multiple environmental cues. This decision mechanism permits the bacteria to sense whether it is in a gall or not, in a living or decaying tumor, in stressed plant tissues, etc. In this scheme, the role of the lactonases selected and maintained in the course of Ti plasmid and agrobacterial evolution appears to be pivotal.

Từ khóa


Tài liệu tham khảo

Pitzschke, 2010, New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation, EMBO J., 29, 1021, 10.1038/emboj.2010.8

Gelvin, 2012, Traversing the Cell: Agrobacterium T-DNA’s journey to the host genome, Front. Plant Sci., 3, 52, 10.3389/fpls.2012.00052

Lacroix, 2013, The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation, Int. J. Dev. Biol., 57, 467, 10.1387/ijdb.130199bl

Subramoni, 2014, Agrobacterium tumefaciens responses to plant-derived signaling molecules, Front. Plant Sci., 5, 322, 10.3389/fpls.2014.00322

Nester, 2015, Agrobacterium: Nature’s genetic engineer, Front. Plant Sci., 5, 730, 10.3389/fpls.2014.00730

Christie, 2016, The mosaic Type IV secretion systems, EcoSal Plus, 7, 1, 10.1128/ecosalplus.esp-0020-2015

Gelvin, 2017, Integration of Agrobacterium T-DNA into the plant genome, Annu. Rev. Genet., 51, 195, 10.1146/annurev-genet-120215-035320

Ooms, 1981, Grown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions, Gene, 14, 33, 10.1016/0378-1119(81)90146-3

Akiyoshi, 1983, Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA, Proc. Natl. Acad. Sci. USA, 80, 407, 10.1073/pnas.80.2.407

Ream, 1983, Multiple mutations in the T region of the Agrobacterium tumefaciens tumor-inducing plasmid, Proc. Natl. Acad. Sci. USA, 80, 1660, 10.1073/pnas.80.6.1660

Spaink, H.P., Kondorosi, A., and Hooykaas, P. (1998). Opine and opine-like molecules involved in plant-Rhizobiaceaea interactions. The Rhizobiaceae, Kluwer Academic Publishers.

Lang, J., Vigouroux, A., Planamente, S., El Sahili, A., Blin, P., Aumont-Nicaise, M., Dessaux, Y., Moréra, S., and Faure, D. (2014). Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS Pathog., 10.

Vigouroux, 2017, Structural basis for high specificity of octopine binding in the plant pathogen Agrobacterium tumefaciens, Sci. Rep., 7, 18033, 10.1038/s41598-017-18243-8

Spaink, H.P., Kondorosi, A., and Hooykaas, P. (1998). Conjugal plasmids and their transfer. The Rhizobiaceae, Kluwer Academic Publishers.

Lang, 2014, Functions and regulation of quorum-sensing in Agrobacterium tumefaciens, Front. Plant Sci., 5, 14, 10.3389/fpls.2014.00014

Piper, 1993, Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction, Nature, 362, 448, 10.1038/362448a0

Zhang, 1993, Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones, Nature, 362, 446, 10.1038/362446a0

Ellis, 1982, Conjugal transfer of nopaline and agropine Ti-plasmids–The role of agrocinopines, Mol. Gen. Genet., 186, 269, 10.1007/BF00331861

El Sahili, A., Li, S.Z., Lang, J., Virus, C., Planamente, S., Ahmar, M., Guimaraes, B.G., Aumont-Nicaise, M., Vigouroux, A., and Soulère, L. (2015). A pyranose-2-phosphate motif is responsible for both antibiotic import and quorum-sensing regulation in Agrobacterium tumefaciens. PLoS Pathog., 11.

Hayman, 1992, Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor, Proc. Natl. Acad. Sci. USA, 89, 643, 10.1073/pnas.89.2.643

Hayman, 1993, Genetic analysis of the agrocinopine catabolic region of Agrobacterium tumefaciens Ti plasmid pTiC58, which encodes genes required for opine and agrocin 84 transport, J. Bacteriol., 175, 5575, 10.1128/jb.175.17.5575-5584.1993

Luo, 1999, Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity, Proc. Natl. Acad. Sci. USA, 96, 9009, 10.1073/pnas.96.16.9009

Piper, 1999, Hierarchical gene regulatory systems arising from fortuitous gene associations: Controlling quorum sensing by the opine regulon in Agrobacterium, Mol. Microbiol., 32, 1077, 10.1046/j.1365-2958.1999.01422.x

Hwang, 1994, TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer, Proc. Natl. Acad. Sci. USA, 91, 4639, 10.1073/pnas.91.11.4639

Li, 1998, Genetic and sequence analysis of the pTiC58 trb locus, encoding a mating-pair formation system related to members of the type IV secretion family, J. Bacteriol., 180, 6164, 10.1128/JB.180.23.6164-6172.1998

Cook, 1997, Ti plasmid conjugation is independent of vir: Reconstitution of the tra functions from pTiC58 as a binary system, J. Bacteriol., 179, 1291, 10.1128/jb.179.4.1291-1297.1997

Farrand, 1996, The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F, J. Bacteriol., 178, 4233, 10.1128/jb.178.14.4233-4247.1996

Fuqua, 1994, A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite, J. Bacteriol., 176, 2796, 10.1128/jb.176.10.2796-2806.1994

Stryker, 1996, The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes, J. Bacteriol., 178, 4248, 10.1128/jb.178.14.4248-4257.1996

Su, 2008, Induction and loss of Ti plasmid conjugative competence in response to the acyl-homoserine lactone quorum-sensing signal, J. Bacteriol., 190, 4398, 10.1128/JB.01684-07

Hwang, 1995, A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer, J. Bacteriol., 177, 449, 10.1128/jb.177.2.449-458.1995

Fuqua, 1995, Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene, J. Bacteriol., 177, 1367, 10.1128/jb.177.5.1367-1373.1995

Hwang, 1999, Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes, Mol. Microbiol., 34, 282, 10.1046/j.1365-2958.1999.01595.x

Dessaux, 2016, Quorum quenching: Role in nature and applied developments, FEMS Microbiol. Rev., 40, 86, 10.1093/femsre/fuv038

Carlier, 2003, The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity, Appl. Environ. Microbiol., 69, 4989, 10.1128/AEM.69.8.4989-4993.2003

Liu, 2007, Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens, Biochemistry, 46, 11789, 10.1021/bi7012849

Haudecoeur, 2009, Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58, Mol. Plant Microbe Interact., 22, 529, 10.1094/MPMI-22-5-0529

Zhang, 2002, Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA, 99, 4638, 10.1073/pnas.022056699

Zhang, 2002, Quorum quenching and proactive host defense, Trends Plant Sci., 8, 238, 10.1016/S1360-1385(03)00063-3

Carlier, 2004, The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal, Mol. Plant Microbe Interact., 17, 951, 10.1094/MPMI.2004.17.9.951

Chai, 2007, Reconstitution of the biochemical activities of the AttJ repressor and the AttK, AttL, and AttM catabolic enzymes of Agrobacterium tumefaciens, J. Bacteriol., 189, 3674, 10.1128/JB.01274-06

Khan, 2009, The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer, J. Bacteriol., 191, 1320, 10.1128/JB.01304-08

Wang, 2006, Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens, Mol. Microbiol., 62, 45, 10.1111/j.1365-2958.2006.05351.x

Rosen, 2003, Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens, FEMS Microbiol. Ecol., 44, 355, 10.1016/S0168-6496(03)00077-1

Chevrot, 2006, GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA, 103, 7460, 10.1073/pnas.0600313103

Yuan, 2008, Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium–plant co-evolution, Cell Microbiol., 10, 2339, 10.1111/j.1462-5822.2008.01215.x

Lang, 2016, The plant GABA signaling downregulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid, New Phytol., 210, 974, 10.1111/nph.13813

Shelp, 2012, Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress, Plant Sci., 193–194, 130, 10.1016/j.plantsci.2012.06.001

Biancucci, 2015, Role of proline and GABA in sexual reproduction of angiosperms, Front. Plant Sci., 6, 680, 10.3389/fpls.2015.00680

Takayama, 2015, How and why does tomato accumulate a large amount of GABA in the fruit?, Front. Plant Sci., 6, 612, 10.3389/fpls.2015.00612

Ramesh, 2017, γ-Aminobutyric acid (GABA) signalling in plants, Cell. Mol. Life Sci., 74, 1577, 10.1007/s00018-016-2415-7

Scholz, 2015, Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response, Front. Plant Sci., 6, 1128, 10.3389/fpls.2015.01128

Haudecoeur, 2009, Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA, 106, 14587, 10.1073/pnas.0808005106

Planamente, 2010, A conserved mechanism of GABA binding and antagonism is revealed by structure-function analysis of the periplasmic binding protein Atu2422 in Agrobacterium tumefaciens, J. Biol. Chem., 285, 30294, 10.1074/jbc.M110.140715

Zhang, 2004, The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp, Mol. Microbiol., 52, 1389, 10.1111/j.1365-2958.2004.04061.x

Hauryliuk, 2015, Recent functional insights into the role of (p)ppGpp in bacterial physiology, Nat. Rev. Microbiol., 13, 298, 10.1038/nrmicro3448

Steinchen, 2016, The magic dance of the alarmones (p)ppGpp, Mol. Microbiol., 101, 531, 10.1111/mmi.13412

Brohn, 1971, A single transaminase for 1,4-diaminobutane and 4-aminobutyrate in a Pseudomonas species, Biochem. Biophys. Res. Commun., 45, 578, 10.1016/0006-291X(71)90456-6

Dover, 1972, Utilization of γ-aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants, J. Bacteriol., 109, 835, 10.1128/jb.109.2.835-843.1972

Nakano, 1977, Two omega-amino acid transaminases from Bacillus cereus, J. Biochem., 81, 1375

Wilms, 2011, Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein, Mol. Microbiol., 80, 492, 10.1111/j.1365-2958.2011.07589.x

Liu, 2015, Salicylic acid signalling: New insights and prospects at a quarter-century milestone, Essays Biochem., 58, 101, 10.1042/bse0580101

Goodner, 2001, Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science, 294, 2323, 10.1126/science.1066803

Wood, 2001, The genome of the natural genetic engineer Agrobacterium tumefaciens C58, Science, 294, 2317, 10.1126/science.1066804

Lang, 2013, Concerted transfer of the virulence Ti plasmid and companion At plasmid in the Agrobacterium tumefaciens-induced plant tumour, Mol. Microbiol., 90, 1178, 10.1111/mmi.12423

Grohmann, 2018, Type IV secretion in Gram-negative and Gram-positive bacteria, Mol. Microbiol., 107, 455, 10.1111/mmi.13896

Lang, 2017, Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders, Sci. Rep., 7, 40126, 10.1038/srep40126

White, 2009, Quorum quenching in Agrobacterium tumefaciens: Chance or necessity?, J. Bacteriol., 191, 1123, 10.1128/JB.01681-08

Haudecoeur, 2010, A fine control of quorum-sensing communication in Agrobacterium tumefaciens, Commun. Integr. Biol., 3, 84, 10.4161/cib.3.2.10429

Lang, 2016, Plant GABA: Proline ratio modulates dissemination of the virulence Ti plasmid within the Agrobacterium tumefaciens hosted population, Plant Signal. Behav., 11, e1178440, 10.1080/15592324.2016.1178440

Cho, 2009, Transsexuality in the rhizosphere: Quorum sensing reversibly converts Agrobacterium tumefaciens from phenotypically female to male, J. Bacteriol., 191, 3375, 10.1128/JB.01608-08

Dobzhansky, 1973, Nothing in biology makes sense except in the light of evolution, Am. Biol. Teach., 35, 125, 10.2307/4444260