Quinolone-Binding Pocket of DNA Gyrase: Role of GyrB

Antimicrobial Agents and Chemotherapy - Tập 46 Số 6 - Trang 1805-1815 - 2002
Jonathan G. Heddle1, Anthony Maxwell1
1Department of Biochemistry, University of Leicester, Leicester, LE1 7RH United Kingdom

Tóm tắt

ABSTRACT

DNA gyrase is a prokaryotic type II topoisomerase and a major target of quinolone antibacterials. The majority of mutations conferring resistance to quinolones arise within the quinolone resistance-determining region of GyrA close to the active site (Tyr 122 ) where DNA is bound and cleaved. However, some quinolone resistance mutations are known to exist in GyrB. Present structural data suggest that these residues lie a considerable distance from the quinolone resistance-determining region, and it is not obvious how they affect quinolone action. We have made and purified two such mutant proteins, GyrB(Asp 426 →Asn) and GyrB(Lys 447 →Glu), and characterized them in vitro. We found that the two proteins behave similarly to GyrA quinolone-resistant proteins. We showed that the mutations exert their effect by decreasing the amount of quinolone bound to a gyrase-DNA complex. We suggest that the GyrB residues form part of a quinolone-binding pocket that includes DNA and the quinolone resistance-determining region in GyrA and that large conformational changes during the catalytic cycle of the enzyme allow these regions to come into close proximity.

Từ khóa


Tài liệu tham khảo

10.1021/bi00061a033

10.1093/nar/26.18.4205

10.1128/AAC.45.7.1994-2000.2001

10.1128/AAC.34.1.1

10.1038/379225a0

10.1146/annurev.biochem.70.1.369

Cove, M. E., A. P. Tingey, and A. Maxwell. 1997. DNA gyrase can cleave short DNA fragments in the presence of quinolone drugs. Nucleic Acids Res.25:2716-2722.

Critchlow, S. E., and A. Maxwell. 1996. DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry35:7387-7393.

10.1128/AAC.33.6.886

10.1016/S1369-5274(99)00008-9

10.1128/mmbr.61.3.377-392.1997

Fass, D., C. E. Bogden, and J. M. Berger. 1999. Quaternary changes in topoisomerase II may direct orthogonal movements of two DNA strands. Nat. Struct. Biol.6:322-326.

10.1073/pnas.78.7.4165

10.1073/pnas.74.11.4772

Gmünder, H., K. Kuratli, and W. Keck. 1997. In the presence of subunit A inhibitors DNA gyrase cleaves DNA fragments as short as 20 bp at specific sites. Nucleic Acids Res.25:604-611.

10.1016/0378-1119(90)90148-K

10.1080/15257770008033048

10.1074/jbc.273.35.22606

Kuhlmann J. A. Dalhoff and H.-J. Zeiler (ed.). 1998. Quinolone antibacterials vol. 127. Springer-Verlag Berlin Germany.

Liu, Q., and J. C. Wang. 1999. Similarity in the catalysis of DNA breakage and rejoining by type IA and IIA DNA topoisomerases. Proc. Natl. Acad. Sci. USA96:881-886.

10.1016/S0021-9258(17)42623-8

Maxwell, A., and A. J. Howells. 1999. Overexpression and purification of bacterial DNA gyrase, p. 135-144. In M.-A. Bjornsti and N. Osheroff (ed.), Protocols for DNA topoisomerases. I. DNA topology and enzyme purification. Humana Press, Totowa, N.J.

Maxwell, A., D. C. Rau, and M. Gellert. 1986. Mechanistic studies of DNA gyrase, p. 137-146. In R. H. Sarma and M. H. Sarma (ed.), Biomolecular stereodynamics. III. Proceedings of the Fourth Conversation in the Discipline of Biomolecular Stereodynamics. Adenine Press, Albany, N.Y.

10.1038/42294

10.1016/S0021-9258(19)86016-7

Nakamura, S., H. Yoshida, M. Bogaki, M. Nakamura, and T. Kojima. 1993. Quinolone resistance mutations in DNA gyrase, p. 135-143. In T. Andoh, H. Ikeda, and M. Oguro (ed.), Molecular biology of DNA topoisomerases and its application to chemotherapy. CRC Press, Inc., Boca Raton, Fla.

Nichols, M. D., K. DeAngelis, J. L. Keck, and J. M. Berger. 1999. Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo 11. EMBO J.18:6177-6188.

10.1016/S0022-2836(02)00049-9

10.1093/nar/22.9.1567

Peterson, U., and T. Schemke. 1998. The chemistry of the quinolones: chemistry in the periphery of the quinolones, p. 63-118. In J. Kuhlmann, A. Dalhoff, and H.-J. Zeiler (ed.), Quinolone antibacterials,vol. 127. Springer, Berlin, Germany.

10.3109/10409239109114072

10.1016/S0021-9258(19)47162-7

Shen, L. L., J. Baranowski, and A. G. Pernet. 1989. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: specificity and cooperativity of drug binding to DNA. Biochemistry28:3879-3885.

Shen, L. L., and A. G. Pernet. 1985. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proc. Natl. Acad. Sci. USA82:307-311.

10.1073/pnas.74.11.4767

Tamura, J. K., A. D. Bates, and M. Gellert. 1992. Slow interaction of 5′-adenylyl-β,γ-imidodiphosphate with Escherichia coli DNA gyrase. J. Biol. Chem.267:9214-9222.

Tornaletti, S., and A. M. Pedrini. 1988. DNA unwinding induced by nalidixic acid binding to DNA. Biochem. Pharmacol.37:1881-1882.

Tornaletti, S., and A. M. Pedrini. 1988. Studies on the interaction of 4-quinolones with DNA by DNA unwinding experiments. Biochim. Biophys. Acta949:279-287.

10.1038/351624a0

10.1006/jmbi.2001.4468

10.1128/AAC.37.1.126

10.1128/jb.148.2.450-458.1981

10.1007/BF00331012

10.1128/AAC.34.6.1271

10.1128/AAC.35.8.1647

10.1007/BF00338386

10.1128/AAC.37.4.839

10.1073/pnas.94.25.13991