Quinacrine inhibits cMET-mediated metastasis and angiogenesis in breast cancer stem cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmad A (2013) Pathways to breast cancer recurrence. ISRN Oncol 2013:290568. https://doi.org/10.1155/2013/290568
Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4
Bouattour M, Raymond E, Qin S et al (2018) Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 67:1132–1149. https://doi.org/10.1002/hep.29496
Chatterjee S, Kundu CN (2020) Nanoformulated quinacrine regulates NECTIN-4 domain specific functions in cervical cancer stem cells. Eur J Pharmacol 883:173308. https://doi.org/10.1016/j.ejphar.2020.173308
Chatterjee S, Sinha S, Molla S et al (2021) PARP inhibitor Veliparib (ABT-888) enhances the anti-angiogenic potentiality of Curcumin through deregulation of NECTIN-4 in oral cancer: role of nitric oxide (NO). Cell Signal 80:109902. https://doi.org/10.1016/j.cellsig.2020.109902
Chatterjee S, Dhal AK, Paul S et al (2022) Combination of talazoparib and olaparib enhanced the curcumin-mediated apoptosis in oral cancer cells by PARP-1 trapping. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-022-04269-7
Das B, Kundu CN (2021) Anti-cancer stem cells potentiality of an anti-malarial agent quinacrine: an old wine in a new bottle. Anticancer Agents Med Chem 21:416–427. https://doi.org/10.2174/1871520620666200721123046
Dash SR, Chatterjee S, Sinha S et al (2021) NIR irradiation enhances the apoptotic potentiality of quinacrine-gold hybrid nanoparticles by modulation of HSP-70 in oral cancer stem cells. Nanomed Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2021.102502
de Souza PL, Castillo M, Myers CE (1997) Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine. Br J Cancer 75:1593–1600. https://doi.org/10.1038/bjc.1997.272
DeSantis CE, Ma J, Gaudet MM et al (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69:438–451. https://doi.org/10.3322/caac.21583
Gaule PB, Crown J, O’Donovan N, Duffy MJ (2014) cMET in triple-negative breast cancer: Is it a therapeutic target for this subset of breast cancer patients? Expert Opin Ther Targets 18:999–1009. https://doi.org/10.1517/14728222.2014.938050
Guo C, Stark GR (2011) FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-κB. Proc Natl Acad Sci 108:7968–7973. https://doi.org/10.1073/pnas.1105369108
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013
Ho-Yen CM, Jones JL, Kermorgant S (2015) The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 17:52. https://doi.org/10.1186/s13058-015-0547-6
Huang R, Rofstad EK (2017) Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8:35351–35367. https://doi.org/10.18632/oncotarget.10169
Krishnapriya S, Sidhanth C, Manasa P et al (2019) Cancer stem cells contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary. Angiogenesis 22:441–455. https://doi.org/10.1007/s10456-019-09669-x
Lopes-Bastos BM, Jiang WG, Cai J (2016) Tumour–endothelial cell communications: important and indispensable mediators of tumour angiogenesis. Anticancer Res 36:1119–1126
Mitra S, Bal A, Kashyap D et al (2020) Tumour angiogenesis and c-Met pathway activation–implications in breast cancer. APMIS Acta Pathol Microbiol Immunol Scand 128:316–325. https://doi.org/10.1111/apm.13031
Mo H-N, Liu P (2017) Targeting MET in cancer therapy. Chronic Dis Transl Med 3:148–153. https://doi.org/10.1016/j.cdtm.2017.06.002
Nayak A, Das S, Nayak D et al (2019) Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol Dordr 42:157–171. https://doi.org/10.1007/s13402-018-0417-1
Oien DB, Pathoulas CL, Ray U et al (2021) Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 68:21–30. https://doi.org/10.1016/j.semcancer.2019.09.021
Parekh A, Das D, Das S et al (2018) Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells. Sci Rep 8:783. https://doi.org/10.1038/s41598-017-18965-9
Parr C, Jiang WG (2001) Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncol 19:857–863
Pradhan R, Chatterjee S, Hembram KC et al (2021) Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem 92:108624. https://doi.org/10.1016/j.jnutbio.2021.108624
Puccini A, Marín-Ramos NI, Bergamo F et al (2019) Safety and tolerability of c-MET inhibitors in cancer. Drug Saf 42:211–233. https://doi.org/10.1007/s40264-018-0780-x
Saeg F, Anbalagan M (2018) Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig 5:39. https://doi.org/10.21037/sci.2018.10.05
Sethy C, Goutam K, Das B et al (2021) Nectin-4 promotes lymphangiogenesis and lymphatic metastasis in breast cancer by regulating CXCR4-LYVE-1 axis. Vascul Pharmacol 140:106865. https://doi.org/10.1016/j.vph.2021.106865
Siddharth S, Das S, Nayak A, Kundu CN (2016a) SURVIVIN as a marker for quiescent-breast cancer stem cells—an intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin Exp Metastasis 33:661–675. https://doi.org/10.1007/s10585-016-9809-7
Siddharth S, Nayak D, Nayak A et al (2016b) ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli. DNA Repair 45:44–55. https://doi.org/10.1016/j.dnarep.2016.05.034
Sinha S, Chatterjee S, Paul S et al (2022) Olaparib enhances the Resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway. Exp Cell Res 420:113338. https://doi.org/10.1016/j.yexcr.2022.113338
Song K, Farzaneh M (2021) Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res Ther 12:245. https://doi.org/10.1186/s13287-021-02321-w
Taraboletti G, D’Ascenzo S, Borsotti P et al (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680. https://doi.org/10.1016/S0002-9440(10)64887-0
Tchou J, Zhao Y, Levine BL et al (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5:1152–1161. https://doi.org/10.1158/2326-6066.CIR-17-0189
Wang Y, Zhan Z, Jiang X et al (2016) Simm530, a novel and highly selective c-Met inhibitor, blocks c-Met-stimulated signaling and neoplastic activities. Oncotarget 7:38091–38104. https://doi.org/10.18632/oncotarget.9349
Yan S, Jiao X, Zou H, Li K (2015) Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol 10:62. https://doi.org/10.1186/s13000-015-0296-y