Quinacrine inhibits cMET-mediated metastasis and angiogenesis in breast cancer stem cells

Journal of Cell Communication and Signaling - Tập 17 Số 4 - Trang 1371-1388 - 2023
Biswajit Das1, Chinmayee Sethy1, Subhajit Chatterjee1, Somya Ranjan Dash1, Saptarshi Sinha1, Subarno Paul1, Kunal Goutam2, Chanakya Nath Kundu1
1Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
2Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha 753007, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad A (2013) Pathways to breast cancer recurrence. ISRN Oncol 2013:290568. https://doi.org/10.1155/2013/290568

Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4

Bouattour M, Raymond E, Qin S et al (2018) Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 67:1132–1149. https://doi.org/10.1002/hep.29496

Chatterjee S, Kundu CN (2020) Nanoformulated quinacrine regulates NECTIN-4 domain specific functions in cervical cancer stem cells. Eur J Pharmacol 883:173308. https://doi.org/10.1016/j.ejphar.2020.173308

Chatterjee S, Sinha S, Molla S et al (2021) PARP inhibitor Veliparib (ABT-888) enhances the anti-angiogenic potentiality of Curcumin through deregulation of NECTIN-4 in oral cancer: role of nitric oxide (NO). Cell Signal 80:109902. https://doi.org/10.1016/j.cellsig.2020.109902

Chatterjee S, Dhal AK, Paul S et al (2022) Combination of talazoparib and olaparib enhanced the curcumin-mediated apoptosis in oral cancer cells by PARP-1 trapping. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-022-04269-7

Das B, Kundu CN (2021) Anti-cancer stem cells potentiality of an anti-malarial agent quinacrine: an old wine in a new bottle. Anticancer Agents Med Chem 21:416–427. https://doi.org/10.2174/1871520620666200721123046

Dash SR, Chatterjee S, Sinha S et al (2021) NIR irradiation enhances the apoptotic potentiality of quinacrine-gold hybrid nanoparticles by modulation of HSP-70 in oral cancer stem cells. Nanomed Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2021.102502

de Souza PL, Castillo M, Myers CE (1997) Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine. Br J Cancer 75:1593–1600. https://doi.org/10.1038/bjc.1997.272

DeSantis CE, Ma J, Gaudet MM et al (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69:438–451. https://doi.org/10.3322/caac.21583

Gaule PB, Crown J, O’Donovan N, Duffy MJ (2014) cMET in triple-negative breast cancer: Is it a therapeutic target for this subset of breast cancer patients? Expert Opin Ther Targets 18:999–1009. https://doi.org/10.1517/14728222.2014.938050

Guo C, Stark GR (2011) FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-κB. Proc Natl Acad Sci 108:7968–7973. https://doi.org/10.1073/pnas.1105369108

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

Ho-Yen CM, Jones JL, Kermorgant S (2015) The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 17:52. https://doi.org/10.1186/s13058-015-0547-6

Huang R, Rofstad EK (2017) Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 8:35351–35367. https://doi.org/10.18632/oncotarget.10169

Krishnapriya S, Sidhanth C, Manasa P et al (2019) Cancer stem cells contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary. Angiogenesis 22:441–455. https://doi.org/10.1007/s10456-019-09669-x

Lopes-Bastos BM, Jiang WG, Cai J (2016) Tumour–endothelial cell communications: important and indispensable mediators of tumour angiogenesis. Anticancer Res 36:1119–1126

Mitra S, Bal A, Kashyap D et al (2020) Tumour angiogenesis and c-Met pathway activation–implications in breast cancer. APMIS Acta Pathol Microbiol Immunol Scand 128:316–325. https://doi.org/10.1111/apm.13031

Mo H-N, Liu P (2017) Targeting MET in cancer therapy. Chronic Dis Transl Med 3:148–153. https://doi.org/10.1016/j.cdtm.2017.06.002

Nayak A, Das S, Nayak D et al (2019) Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol Dordr 42:157–171. https://doi.org/10.1007/s13402-018-0417-1

Oien DB, Pathoulas CL, Ray U et al (2021) Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 68:21–30. https://doi.org/10.1016/j.semcancer.2019.09.021

Parekh A, Das D, Das S et al (2018) Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells. Sci Rep 8:783. https://doi.org/10.1038/s41598-017-18965-9

Parr C, Jiang WG (2001) Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncol 19:857–863

Pradhan R, Chatterjee S, Hembram KC et al (2021) Nano formulated Resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem 92:108624. https://doi.org/10.1016/j.jnutbio.2021.108624

Puccini A, Marín-Ramos NI, Bergamo F et al (2019) Safety and tolerability of c-MET inhibitors in cancer. Drug Saf 42:211–233. https://doi.org/10.1007/s40264-018-0780-x

Saeg F, Anbalagan M (2018) Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig 5:39. https://doi.org/10.21037/sci.2018.10.05

Sethy C, Goutam K, Das B et al (2021) Nectin-4 promotes lymphangiogenesis and lymphatic metastasis in breast cancer by regulating CXCR4-LYVE-1 axis. Vascul Pharmacol 140:106865. https://doi.org/10.1016/j.vph.2021.106865

Siddharth S, Das S, Nayak A, Kundu CN (2016a) SURVIVIN as a marker for quiescent-breast cancer stem cells—an intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin Exp Metastasis 33:661–675. https://doi.org/10.1007/s10585-016-9809-7

Siddharth S, Nayak D, Nayak A et al (2016b) ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli. DNA Repair 45:44–55. https://doi.org/10.1016/j.dnarep.2016.05.034

Sinha S, Chatterjee S, Paul S et al (2022) Olaparib enhances the Resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway. Exp Cell Res 420:113338. https://doi.org/10.1016/j.yexcr.2022.113338

Song K, Farzaneh M (2021) Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res Ther 12:245. https://doi.org/10.1186/s13287-021-02321-w

Taraboletti G, D’Ascenzo S, Borsotti P et al (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680. https://doi.org/10.1016/S0002-9440(10)64887-0

Tchou J, Zhao Y, Levine BL et al (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5:1152–1161. https://doi.org/10.1158/2326-6066.CIR-17-0189

Wang Y, Zhan Z, Jiang X et al (2016) Simm530, a novel and highly selective c-Met inhibitor, blocks c-Met-stimulated signaling and neoplastic activities. Oncotarget 7:38091–38104. https://doi.org/10.18632/oncotarget.9349

Yan S, Jiao X, Zou H, Li K (2015) Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol 10:62. https://doi.org/10.1186/s13000-015-0296-y

Zhang Y, Xia M, Jin K et al (2018) Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 17:45. https://doi.org/10.1186/s12943-018-0796-y