Quantum transport in honeycomb lattice ribbons with armchair and zigzag edges coupled to semi-infinite linear chain leads
Tóm tắt
We study quantum transport in honeycomb lattice ribbons with either
armchair or zigzag edges. The ribbons are coupled to semi-infinite
linear chains serving as the input and output leads and we use a
tight-binding Hamiltonian with nearest-neighbor hops. The input
and output leads are coupled to the ribbons through bar contacts.
In narrow ribbons we find transmission gaps for both types of edges.
The appearance of this gap is due to the enhanced quantum
interference coming from the multiple channels in bar contacts.
The center of the gap is at the middle of the band in ribbons with
armchair edges. This particle-hole symmetry is because bar
contacts do not mix the two sublattices of the underlying bipartite
honeycomb lattice when the ribbon has armchair edges. In
ribbons with zigzag edges the gap center is displaced to the right
of the band center. This breakdown of particle-hole symmetry is
the result of bar contacts now mixing the two sublattices. We also
find transmission oscillations and resonances within the transmitting
region of the band for both types of edges. Extending the length of
a ribbon does not affect the width of the transmission gap, as long
as the ribbon’s length is longer than a critical value when the gap
can form. Increasing the width of the ribbon, however, changes the
width of the gap. In ribbons with zigzag edges the gap width
systematically shrinks as the width of the ribbon is increased. In
ribbons with armchair edges the gap is not well-defined because of
the appearance of transmission resonances. We also find only
evanescent waves within the gap and both evanescent and propagating
waves in the transmitting regions.
Tài liệu tham khảo
R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, P. Natl. Acad. Sci. USA 102, 10451 (2005)
A.K. Geim, K.S. Novoselov, Nature Materials 6, 183 (2007)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature (London) 438, 197 (2005)
Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature (London) 438, 201 (2005)
D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 96, 176803 (2006)
V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)
L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)
M. Ezawa, Phys. Rev. B 73, 045432 (2006)
M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn 65, 1920 (1996)
K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)
K.I. Sasaki, S. Murakami, R. Saito, J. Phys. Soc. Jpn 75, 074713 (2006)
Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)
K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999)
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)
M.-Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)
Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Physica E 40, 228 (2007)
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov et al., Science 312, 1191 (2006)
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)
B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, P. Kim, Appl. Phys. Lett. 91, 192107 (2007)
D. Bong, I.W. Tam, R. Breslow, J. Am. Chem. Soc. 126, 11796 (2004)
T. Otsubo, Y. Aso, K. Takimiya, Bull. Chem. Soc. Jpn 74, 1789 (2001)
R. Pearman, D. Bong, R. Breslow, G.W. Flynn, Polym. Mater. Sci. Eng. 89, 213 (2003)
N. Robertson, C.A. McGowan, Chem. Soc. Rev. 32, 96 (2003)
I.W. Tam, J. Yan, R. Breslow, Org. Lett. 8, 183 (2006)
D. Schultz, F. Biaso, A.R.M. Shahi, M. Geoffroy, K. Rissanen, L. Gagliardi, C.J. Cramer, J.R. Nitschke, Chem. Eur. J. 14, 7180 (2008)
X. Guo, M. Myers, S. Xiao, M. Lefenfeld, R. Steiner, G.S. Tulevski, J. Tang, J. Baumert, F. Leibfarth, J.T. Yardley et al., P. Natl. Acad. Sci. USA 103, 11452 (2006)
X. Guo, J.P. Small, J.E. Klare, Y. Wang, M.S. Purewal, I.W. Tam, B.H. Hong, R. Caldwell, L. Huang, S. O’Brien et al., Science 311, 356 (2006)
Y.S. Park, A.C. Whalley, M. Kamenetska, M.L. Steigerwald, M.S. Hybertsen, C. Nuckolls, L. Venkataraman, J. Am. Chem. Soc. 129, 15768 (2007)
L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Nano Lett. 6, 458 (2006)
P.W. Anderson, Phys. Rev. 109, 1492 (1958)
P.G. de Gennes, P. Lafore, J. Millot, J. Phys. Chem. Solids 11, 105 (1959)
S. Kirkpatrick, T.P. Eggarter, Phys. Rev. B 6, 3598 (1972)
P.F. Bagwell, Phys. Rev. B 41, 10354 (1990)
Y.M. Blanter, I. Martin, Phys. Rev. B 76, 155433 (2007)
J.P. Robinson, H. Schomerus, Phys. Rev. B 76, 115430 (2007)
H. Schomerus, Phys. Rev. B 76, 045433 (2007)
D. Daboul, I. Chang, A. Aharony, Eur. Phys. J. B 16, 303 (2000)
J.-S. Wang, J. Wang, J.-T. Lü, Eur. Phys. J. B 62, 381 (2008)
G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (Johns Hopkins Univ. Press, Baltimore, 1996)
E. Cuansing, H. Nakanishi, Physica A 387, 806 (2008)
M.F. Islam, H. Nakanishi, Phys. Rev. E 77, 061109 (2008)
E. Cuansing, H. Nakanishi, Phys. Rev. E 70, 066142 (2004)
A. Ayuela, L. Chico, W. Jaskólski, Phys. Rev. B 77, 085435 (2008)
W. Lu, E.-G. Wang, H. Guo, Phys. Rev. B 68, 075407 (2003)