Quantum groups and representations of monoidal categories

Mathematical Proceedings of the Cambridge Philosophical Society - Tập 108 Số 2 - Trang 261-290 - 1990
David N. Yettera1
1Ohio State University

Tóm tắt

This paper is intended to make explicit some aspects of the interactions which have recently come to light between the theory of classical knots and links, the theory of monoidal categories, Hopf-algebra theory, quantum integrable systems, the theory of exactly solvable models in statistical mechanics, and quantum field theories. The main results herein show an intimate relation between representations of certain monoidal categories arising from the study of new knot invariants or from physical considerations and quantum groups (that is, Hopf algebras). In particular categories of modules and comodules over Hopf algebras would seem to be much more fundamental examples of monoidal categories than might at first be apparent. This fundamental role of Hopf algebras in monoidal categories theory is also manifest in the Tannaka duality theory of Deligne and Mime [8a], although the relationship of that result and the present work is less clear than might be hoped.

Từ khóa


Tài liệu tham khảo

Penrose, 1971, Combinatorial Mathematics and its Applications, 221

10.1007/BF01247086

10.1143/JPSJ.56.3039

10.1016/0001-8708(89)90018-2

10.1070/RM1986v041n05ABEH003441

[21a] Majid S. . Doubles of quasitriangular Hopf algebras. (Preprint.)

Abe, 1977, Hopf Algebras

[23] Moore G. and Seiberg N. . Classical and quantum conformal field theory. (Preprint.)

Sweedler, 1969, Hopf Algebras

10.1103/PhysRevLett.19.1312

[28] Street R. S. (Private communication.)

10.1143/JPSJ.57.1173

[26] Segal G. . The definition of conformal theory. (Preprint.)

[12] Joyal A. and Street R. . Braided tensor categories. (Preprint.)

[6] Brustein R. , Ne'eman V. and Sternberg S. . Duality, crossing and Mac Lane's coherence. (Preprint.)

10.1143/JPSJ.56.3464

10.1143/JPSJ.57.1173

Atiyah, 1988, Notes on the Oxford seminar on Jones–Witten theory

10.1016/0003-4916(72)90335-1

10.1090/conm/078/975085

[7] Carboni A. . Matrices, relations and group representations. (Preprint, 1988.)

[8] Deligne P. . (Private communication.)

Deligne, 1982, Hodge Cycles, Motives and Shimura Varieties, 900, 10.1007/978-3-540-38955-2

[27] Shum M.-C. . Tortile Tensor Categories. Ph.D. thesis, Macquarie University (1989).

Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc.

[11] Joyal A. . Lecture at McGill University (Autumn, 1987).

[13] Joyal A. and Street R. . Planar diagrams and tensor algebra. (Preprint.)

10.1016/0022-4049(80)90101-2

10.1007/BF01406222

Kulish, 1980, Solutions of the Yang–Baxter equation, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov, 95, 129

10.1007/978-1-4612-9839-7

10.1070/RM1979v034n05ABEH003909

Mac Lane, 1963, Natural associativity and commutativity, Rice Univ. Stud., 49, 28

Reidemeister, 1983, Knot Theory

Reidemeister, 1932, Knotentheorie

[31] Witten E. . Quantum field theory and the Jones polynomial. (Preprint.)

Freyd, Coherence theorems via knot theory, J. Pure Appl. Algebra

Manin, 1988, Quantum groups and non-commutative geometry