Quantum cryptography based on an algorithm for determining simultaneously all the mappings of a Boolean function
Tóm tắt
We study a quantum cryptography based on an algorithm for determining simultaneously all the mappings of a Boolean function using an entangled state. The security of our cryptography is based on the Ekert 1991 protocol, which uses an entangled state. Eavesdropping destroys the entanglement. Alice selects a secret function from the number of possible function types. Bob’s aim is then to determine the selected function (a key) without an eavesdropper learning it. In order for both Alice and Bob to be able to select the same function classically, in the worst case, Bob requires multiple queries to Alice. In the quantum case, however, Bob requires just a single query. By measuring the single entangled state, which is sent to him by Alice, Bob can obtain the function that Alice selected. This quantum key distribution method is faster compared to the multiple queries that would be required in the classical case.
Từ khóa
Tài liệu tham khảo
Boyer, M., Liss, R., Mor, T.: Composable security against collective attacks of a modified BB84 QKD protocol with information only in one basis. Theor. Comput. Sci. 801, 96–109 (2020)
Geihs, M., et al.: The status of quantum-key-distribution-based long-term secure internet communication. IEEE Trans. Sustain. Comput. 6(1), 19–29 (2021)
Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. In: Advances in Cryptology—EUROCRYPT 2020, pp. 280–310 (2020)
Mayers, D.: Unconditional security in quantum cryptography. J ACM 48(3), 351–406 (2001)
Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of the security of quantum key distribution. J Cryptol. 19(4), 381–439 (2006)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)
Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of 25th Annual ACM Symposium on Theory of Computing (STOC ’93), p. 11 (1993)
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411 (1997)
Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553 (1992)
Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998)
Simon, D.R.: On the power of quantum computation. In: Proceedings of 35th IEEE Annual Symposium on Foundations of Computer Science, p. 116 (1994)
Shor, P.W.: Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of 35th IEEE Annual Symposium on Foundations of Computer Science, p. 124 (1994)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, p. 212 (1996)
Nagata, K., Nakamura, T.: Some theoretically organized algorithm for quantum computers. Int. J. Theor. Phys. 59, 611 (2020)
Nakamura, T., Nagata, K.: Physics’ evolution toward computing. Int. J. Theor. Phys. 60, 70 (2021)
Nagata, K., Diep, D.N., Nakamura, T.: Quantum cryptography based on an algorithm for determining a function using qudit systems. Int. J. Theor. Phys. 59, 2875 (2020)
Diep, D.N., Nagata, K., Wong, R.: Continuous-variable quantum computing and its applications to cryptography. Int. J. Theor. Phys. 59, 3184 (2020)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)
Gilbert, W.J., Nicholson, W.K.: Modern Algebra with Applications, 2nd edn. Wiley, New York (2004)
Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016)
Meyer-Scott, E., Silberhorn, C., Migdall, A.: Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum. 91, 041101 (2020)
Ma, L., Chang, T., Mink, A., Slattery, O., Hershman, B., Tang, X.: Experimental demonstration of a detection-time-bin-shift polarization encoding quantum key distribution system. IEEE Commun. Lett. 12(6), 459–461 (2008)
Breguet, J., Muller, A., Gisin, N.: Quantum cryptography with polarized photons in optical fibres. J. Mod. Opt. 41(12), 2405–2412 (1994)
Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments, pp. 122–127. Springer, Berlin (1994)
Bruss, D., Erdelyti, G., Meyer, T., Riege, T., Rothe, J.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 6 (2007)
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)
Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(3), 2651–2658 (1996)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Lutkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)
Lo, H., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 052310 (2002)
Murphy, S., Robshaw, M.J.B.: Essential algebraic structure within the AES. In: Annual International Cryptology Conference—Advances in Cryptology—CRYPTO, pp. 1–16 (2002)
Liao, S.K., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)
Yin, J., et al.: Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017)
Yuan, Z.L., et al.: 10-Mb/s quantum key distribution. J. Lightwave Technol. 36(16), 3427–3433 (2018)
Honjo, T., et al.: Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16(23), 19118–19126 (2008)
Wengerowsky, S., et al.: Entanglement distribution over a 96-km-long submarine optical fiber. PNAS 116(14), 6684–6688 (2019)