Quantum convolutional neural networks with interaction layers for classification of classical data

Jishnu Mahmud1, Raisa Mashtura1, Shaikh Anowarul Fattah1, Mohammad Saquib2
1Department of Electrical & Electronic Engineering, Bangladesh University of Engineering & Technology, Dhaka, Bangladesh
2Department of Electrical Engineering, The University of Texas at Dallas, Richardson, USA

Tóm tắt

Quantum machine learning (QML) has come into the limelight due to the exceptional computational abilities of quantum computers. With the promises of near error-free quantum computers in the not-so-distant future, it is important that the effect of multi-qubit interactions on quantum neural networks is studied extensively. This paper introduces a quantum convolutional network with novel interaction layers exploiting three-qubit interactions, while studying the network’s expressibility and entangling capability, for classifying both image and one-dimensional data. The proposed approach is tested on three publicly available datasets namely MNIST, Fashion MNIST, and Iris datasets, flexible in performing binary and multiclass classifications, and is found to supersede the performance of existing state-of-the-art methods.

Từ khóa


Tài liệu tham khảo

Araujo IF, Park DK, Petruccione F et al (2021) A divide-and-conquer algorithm for quantum state preparation. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-85474-1 Arute F, Arya K, Babbush R et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–510. https://doi.org/10.1038/s41586-019-1666-5 Ayoade O, Rivas P, Orduz J (2022) Artificial intelligence computing at the quantum level. Data 7(3):28 Bergholm V, Izaac J, Schuld M et al (2018) Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968https://doi.org/10.48550/arXiv.1811.04968 Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press Chalumuri A, Kune R, Manoj B (2021) A hybrid classical-quantum approach for multi-class classification. Quantum Inf Process 20(3):1–19. https://doi.org/10.1007/s11128-021-03029-9 Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nature Phys 15(12):1273–1278. https://doi.org/10.1038/s41567-019-0648-8 De Marsico M, Nappi M, Riccio D et al (2015) Mobile iris challenge evaluation (miche)-i, biometric iris dataset and protocols. Pattern Recogn Lett 57:17–23 Deng L (2012) The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Proc Mag 29(6):141–142 Enos GR, Reagor MJ, Henderson MP et al (2021) Synthetic weather radar using hybrid quantum-classical machine learning. arXiv preprint arXiv:2111.15605https://doi.org/10.48550/arXiv.2111.15605 Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 Hur T, Kim L, Park DK (2022) Quantum convolutional neural network for classical data classification. Quantum Mach Intell 4(1):1–18. https://doi.org/10.1007/s42484-021-00061-x Jain S, Ziauddin J, Leonchyk P et al (2020) Quantum and classical machine learning for the classification of non-small-cell lung cancer patients. Springer Nature App Sci 2(6):1–10. https://doi.org/10.1007/s42452-020-2847-4 Kerenidis I, Prakash A (2022) Quantum machine learning with subspace states. arXiv preprint arXiv:2202.00054 Liu J, Lim KH, Wood KL et al (2021) Hybrid quantum-classical convolutional neural networks. Sci China Phys Mech Astron 64(9):1–8. https://doi.org/10.1007/s11433-021-1734-3 Madzik MT, Asaad S, Youssry A et al (2022) Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601(7893):348–353. https://doi.org/10.1038/s41586-021-04292-7 Mengoni R, Di Pierro A (2019) Kernel methods in quantum machine learning. Quantum Mach Intell 1(3):65–71. https://doi.org/10.1007/s42484-019-00007-4 Nesterov YE (1983) A method for solving the convex programming problem with convergence rate. In: Dokl Akad Nauk SSSR, pp 543–547 Nguyen N (2023) Biomarker discovery with quantum neural networks: A case-study in ctla4-activation pathways. arXiv preprint arXiv:2306.01745 Nguyen N, Chen KC (2022) Quantum embedding search for quantum machine learning. IEEE Access 10:41444–41456 Pesah A, Cerezo M, Wang S et al (2021) Absence of barren plateaus in quantum convolutional neural networks. Phys Rev X 11(4):041011. https://doi.org/10.1103/PhysRevX.11.041011 Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130503. https://doi.org/10.1103/PhysRevLett.113.130503 Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. Advances in neural information processing systems 30 Schuld M (2021) Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020https://doi.org/10.48550/arXiv.2101.11020 Schuld M, Killoran N (2022) Is quantum advantage the right goal for quantum machine learning? Prx Quantum 3(3):030101 Schuld M, Petruccione F (2018) Supervised learning with quantum computers, vol 17. Springer. https://doi.org/10.1007/978-3-319-96424-9 Schuld M, Bocharov A, Svore KM et al (2020) Circuit-centric quantum classifiers. Phys Rev A 101:032308. https://doi.org/10.1103/PhysRevA.101.032308 Schuld M, Sweke R, Meyer JJ (2021) Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys Rev A 103(3):032430 Sim S, Johnson PD, Aspuru-Guzik A (2019) Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv Quantum Technol 2(12):1900070 Von Lilienfeld OA (2018) Quantum machine learning in chemical compound space. Angewandte Chemie International Edition 57(16):4164–4169. https://doi.org/10.1002/anie.201709686 Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109:050505. https://doi.org/10.1103/PhysRevLett.109.050505 Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747