Quantum computing
Tóm tắt
Quantum computing promises to be the next disruptive technology, with numerous possible applications and implications for organizations and markets. Quantum computers exploit principles of quantum mechanics, such as superposition and entanglement, to represent data and perform operations on them. Both of these principles enable quantum computers to solve very specific, complex problems significantly faster than standard computers. Against this backdrop, this fundamental gives a brief overview of the three layers of a quantum computer: hardware, system software, and application layer. Furthermore, we introduce potential application areas of quantum computing and possible research directions for the field of information systems.
Tài liệu tham khảo
Aaronson, S. (2008). THE LIMITS OF Quantum. Scientific American, 298(3), 62–69. http://www.jstor.org/stable/26000518. Accessed 3 June 2021
Albash, T., & Lidar, D. A. (2018). Adiabatic quantum computation. Reviews of Modern Physics, 90(1), 015002-1-0150026–4. https://doi.org/10.1103/RevModPhys.90.015002
Almudever, C. G., Lao, L., Fu, X., Khammassi, N., Ashraf, I., Iorga, D., Varsamopoulos, S., Eichler, C., Wallraff, A., Geck, L., Kruth, A., Knoch, J., Bluhm, H., & Bertels, K. (2017). The engineering challenges in quantum computing, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, 836–845. https://doi.org/10.23919/DATE.2017.7927104
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5
Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), 563–591. https://doi.org/10.1007/BF01011339
Bennett, C. H., & Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560, 7–11. https://doi.org/10.1016/j.tcs.2014.05.025
Boehringer-Ingelheim. (2021). Partnership in quantum computing for Pharma R&D | Press. https://www.boehringer-ingelheim.com/press-release/partnering-google-quantum-computing. Accessed 3 June 2021
Bosch, S. (2020). Quantum algorithms for linear algebra and optimization [Master Thesis, École polytechnique fédérale de Lausanne]. Library catalog. https://www.academia.edu/43923193/Quantum_Algorithms_for_Linear_Algebra_and_Optimization?source=swp_share. Accessed 3 June 2021
Braun, M. C., Decker, T., Hegemann, N., Kerstan, S. F., & Schäfer, C. (2021). A quantum algorithm for the sensitivity analysis of business risks. http://arxiv.org/pdf/2103.05475v1. Accessed 3 June 2021
Budde, F., & Volz, D. (2019). The next big thing? Quantum computing’s potential impact on chemicals. https://www.mckinsey.com/industries/chemicals/our-insights/the-next-big-thing-quantum-computings-potential-impact-on-chemicals. Accessed 3 June 2021
Carrel-Billiard, M., Treat, D., Dukatz, C., & Ramesh, S. (2021). Accenture get ready for the quantum impact. https://www.accenture.com/_acnmedia/PDF-144/Accenture-Get-Ready-for-the-Quantum-Impact.pdf. Accessed 3 June 2021
Chakrabarti, S., Krishnakumar, R., Mazzola, G., Stamatopoulos, N., Woerner, S., & Zeng, W. J. (2021). A threshold for quantum advantage in derivative pricing. Quantum, 5, 463–504. https://doi.org/10.22331/q-2021-06-01-463
Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., & Wossnig, L. (2018). Quantum machine learning: A classical perspective. Proceedings Mathematical, Physical, and Engineering Sciences, 474(2209), 20170551. https://doi.org/10.1098/rspa.2017.0551
DeBenedictis, E. P. (2018). A future with quantum machine learning. Computer, 51(2), 68–71. https://doi.org/10.1109/MC.2018.1451646
Dendukuri, A., & Luu, K. (2018). Image processing in quantum computers. http://arxiv.org/pdf/1812.11042v3. Accessed 3 June 2021
Ding, Y., & Chong, F. T. (2020). Quantum computer systems: Research for noisy intermediate-scale quantum computers. Synthesis lectures on computer architecture. Morgan &Claypool. https://doi.org/10.2200/S01014ED1V01Y202005CAC051
Egger, D. J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner, S., & Yndurain, E. (2020). Quantum computing for finance: State-of-the-art and future prospects. IEEE Transactions on Quantum Engineering, 1, 1–24. https://doi.org/10.1109/TQE.2020.3030314
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780. https://doi.org/10.1103/PhysRev.47.777
Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6–7), 467–488. https://doi.org/10.1007/BF02650179
Gambetta, J. (2020). IBM’s Roadmap for scaling quantum technology. https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/. Accessed 3 June 2021
Gao, X., Zhang, Z.-Y., & Duan, L.-M. (2018). A quantum machine learning algorithm based on generative models. Science Advances, 4(12), eaat9004. https://doi.org/10.1126/sciadv.aat9004
Gartner. (2019). The CIO's guide to quantum computing. https://www.gartner.com/smarterwithgartner/the-cios-guide-to-quantum-computing. Accessed 3 June 2021
Gerbert, P., & Ruess, F. (2018). The next decade in quantum computing and how to play. https://www.bcg.com/publications/2018/next-decade-quantum-computing-how-play. Accessed 3 June 2021
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, pp. 212–219. https://doi.org/10.1145/237814.237866
Grumbling, E., & Horowitz, M. (2019). Quantum computing: Progress and prospects (2019). National Academies Press. https://doi.org/10.17226/25196
Hadda, M., & Schinasi-Halet, G. (2019). Quantum computing: A technology of the future already present. https://www.pwc.fr/fr/assets/files/pdf/2019/11/en-france-pwc-point-of-view-quantum-computing-2019.pdf. Accessed 3 June 2021
Hann, C. T., Zou, C.-L., Zhang, Y., Chu, Y., Schoelkopf, R. J., Girvin, S. M., & Jiang, L. (2019). Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Physical Review Letters, 123(25), 250501. https://doi.org/10.1103/PhysRevLett.123.250501
Harrow, A., Hayden, P., & Leung, D. (2004). Superdense coding of quantum states. Physical Review Letters, 92(18), 187901. https://doi.org/10.1103/PhysRevLett.92.187901
Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters, 103(15), 150502.
Hartmann, M. J., & Deppe, F. (2021). Erste Demonstration von Quantenüberlegenheit. https://doi.org/10.1002/piuz.202001587
Hazan, E., Ménard, A., Patel, M., & Ostojic, I. (2020). The next tech revolution: quantum computing. https://www.mckinsey.com/fr/~/media/McKinsey/Locations/Europe%20and%20Middle%20East/France/Our%20Insights/The%20next%20tech%20revolution%20Quantum%20Computing/Quantum-Computing.ashx. Accessed 3 June 2021
Hoffmann, M. (2021). The quantum speedup will allow completely new applications. Digitale Welt, 5(2), 10–12. https://doi.org/10.1007/s42354-021-0329-5
Hughes, C., Finke, D., German, D.‑A., Merzbacher, C., Vora, P. M., & Lewandowski, H. J. (2022). Assessing the needs of the quantum industry. IEEE Transactions on Education, 1–10. https://doi.org/10.1109/TE.2022.3153841
IBM. (2019). Building your quantum capability: The case for joining an “ecosystem". https://www.ibm.com/thought-leadership/institute-business-value/report/quantumeco. Accessed 3 June 2021
Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J., Johansson, J., Bunyk, P., Chapple, E. M., Enderud, C., Hilton, J. P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., & Rose, G. (2011). Quantum annealing with manufactured spins. Nature, 473(7346), 194–198. https://doi.org/10.1038/nature10012
Kühn, M., Zanker, S., Deglmann, P., Marthaler, M., & Weiß, H. (2019). Accuracy and resource estimations for quantum chemistry on a near-term quantum computer. Journal of Chemical Theory and Computation, 15(9), 4764–4780. https://doi.org/10.1021/acs.jctc.9b00236
Langione, M., Tillemann-Dick, C., Kumar, A [Amit], & Taneja, V. (2019). Where will quantum computers create value—and when? https://www.bcg.com/publications/2019/quantum-computers-create-value-when. Accessed 3 June 2021
Li, S.-S., Long, G.-L., Bai, F.-S., Feng, S.-L., & Zheng, H.-Z. (2001). Quantum computing. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 11847–11848. https://doi.org/10.1073/pnas.191373698
Li, Y [Yangyang], Tian, M., Liu, G., Peng, C., & Jiao, L. (2020). Quantum optimization and quantum learning: A Survey. IEEE Access, 8, 23568–23593. https://doi.org/10.1109/ACCESS.2020.2970105
Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., & Coecke, B. (2021). QNLP in practice: Running compositional models of meaning on a quantum computer. http://arxiv.org/pdf/2102.12846v1. Accessed 3 June 2021
Lycett, M. (2013). ‘Datafication’: Making sense of (big) data in a complex world. European Journal of Information Systems, 22(4), 381–386. https://doi.org/10.1057/ejis.2013.10
Marinescu, D. C., & Marinescu, G. M. (2012). Quantum error-correcting codes. In Classical and Quantum Information (pp. 455–562). Elsevier. https://doi.org/10.1016/B978-0-12-383874-2.00005-9
Ménard, A., Ostojic, I., Patel, M., & Volz, D. (2020). A game plan for quantum computing. https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-game-plan-for-quantum-computing. Accessed 3 June 2021
Mendling, J., Pentland, B. T., & Recker, J. (2020). Building a complementary agenda for business process management and digital innovation. European Journal of Information Systems, 29(3), 208–219. https://doi.org/10.1080/0960085X.2020.1755207
Mone, G. (2020). The quantum threat. Communications of the ACM, 63(7), 12–14. https://doi.org/10.1145/3398388
Mooney, G. J., Hill, C. D., & Hollenberg, L. C. L. (2019). Entanglement in a 20-qubit superconducting quantum computer. Scientific Reports, 9(1), 13465. https://doi.org/10.1038/s41598-019-49805-7
Motta, M., Gujarati, T. P., Rice, J. E., Kumar, A [Ashutosh], Masteran, C., Latone, J. A., Lee, E., Valeev, E. F., & Takeshita, T. Y. (2020). Quantum simulation of electronic structure with a transcorrelated Hamiltonian: Improved accuracy with a smaller footprint on the quantum computer. Physical Chemistry Chemical Physics: PCCP, 22(42), 24270–24281. https://doi.org/10.1039/d0cp04106h
Neukart, F. (2021). Quantencomputing in der Automobilindustrie. Digitale Welt, 5(2), 34–37. https://doi.org/10.1007/s42354-021-0334-8
Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., & Parney, B. (2017). Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4, 29. https://doi.org/10.3389/fict.2017.00029
OECD. (2021). Significant shortages exist in ICT and other STEM related knowledge domains. In OECD Economic Surveys: Portugal. OECD Economic Surveys: Portugal 2021. OECD. https://doi.org/10.1787/f1155a36-en
Park, D. K., Petruccione, F., & Rhee, J.-K.K. (2019). Circuit-based quantum random access memory for classical data. Scientific Reports, 9(1), 3949. https://doi.org/10.1038/s41598-019-40439-3
Recker, J., Lukyanenko, R., Jabbari, M., Samuel, B., & Castellanos, A. (2021). From representation to mediation: A new agenda for conceptual modeling research in a digital world. MIS Quarterly, 45(1a), 269–300. https://doi.org/10.25300/MISQ/2021/16027
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350. https://doi.org/10.1103/RevModPhys.81.1301
Schrödinger, E. (1935). Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 555–563. https://doi.org/10.1017/S0305004100013554
Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 124–134. https://doi.org/10.1109/SFCS.1994.365700
Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review a, 52(4), R2493. https://doi.org/10.1103/PhysRevA.52.R2493
Steane, A. (1998). Quantum computing. Reports on Progress in Physics, 61(2), 117–173. https://doi.org/10.1088/0034-4885/61/2/002
vom Brocke, J., Baier, M.-S., Schmiedel, T., Stelzl, K., Röglinger, M., & Wehking, C. (2021). Context-aware business process management. Business & Information Systems Engineering, 63(5), 533–550. https://doi.org/10.1007/s12599-021-00685-0
Yarkoni, S., Leib, M., Skolik, A., Streif, M., Neukart, F., & von Dollen, D. (2019). Volkswagen and quantum computing: An industrial perspective. Digitale Welt, 3(2), 34–37. https://doi.org/10.1007/s42354-019-0166-y
Zhong, H.‑S., Wang, H., Deng, Y.‑H., Chen, M.‑C., Peng, L.‑C., Luo, Y.‑H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.‑Y., Zhang, W.‑J., Li, H., Li, Y [Yuxuan], Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.-L., Lu, C.-Y., & Pan, J.‑W. (2020). Quantum computational advantage using photons. Science (New York, N.Y.), 370(6523), 1460–1463. https://doi.org/10.1126/science.abe8770
Ziegler, M., & Leonhardt, T. (2019). Quantum computing. Applied now. Digitale Welt, 3(2), 50–52. https://doi.org/10.1007/s42354-019-0170-2