Quantum autoencoders for communication-efficient cloud computing

Springer Science and Business Media LLC - Tập 5 - Trang 1-15 - 2023
Yan Zhu1, Ge Bai1, Yuexuan Wang2,3, Tongyang Li4,5,6, Giulio Chiribella1,7,8,9
1QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of Hong Kong, Hong Kong, China
2AI Technology Lab Department of Computer Science, The University of Hong Kong, Hong Kong, China
3College of Computer Science and Technology, Zhejiang University, Hangzhou, China
4Center on Frontiers of Computing Studies, Peking University, Beijing, China
5School of Computer Science, Peking University, Beijing, China
6Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, USA
7Department of Computer Science, University of Oxford, Oxford, UK
8Perimeter Institute for Theoretical Physics, Waterloo, Canada
9The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China

Tóm tắt

In the model of quantum cloud computing, the server executes a computation on the quantum data provided by the client. In this scenario, it is important to reduce the amount of quantum communication between the client and the server. A possible approach is to transform the desired computation into a compressed version that acts on a smaller number of qubits, thereby reducing the amount of data exchanged between the client and the server. Here we propose quantum autoencoders for quantum gates (QAEGate) as a method for compressing quantum computations. We illustrate it in concrete scenarios of single-round and multi-round communication and validate it through numerical experiments. A bonus of our method is it does not reveal any information about the server’s computation other than the information present in the output.

Tài liệu tham khảo

Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79 Arute F et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–510 Zhong H-S et al (2020) Quantum computational advantage using photons. Science 370(6523):1460–1463 Broadbent A, Fitzsimons J, Kashefi E (2009) Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, pp 517–526 Arrighi P, Salvail L (2006) Blind quantum computation. Int J Quantum Inf 4(05):883–898 Morimae T, Fujii K (2013) Blind quantum computation protocol in which alice only makes measurements. Phys Rev A 87(5):050301 Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117 Romero J, Olson JP, Aspuru-Guzik A (2017) Quantum autoencoders for efficient compression of quantum data. Quantum Sci Technol 2(4):045001 Bottou L (2012) Stochastic gradient descent tricks. In: Neural Networks: Tricks of the Trade. Springer, pp 421–436 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I et al (2010) A view of cloud computing. Commun ACM 53(4):50–58 Barz S, Kashefi E, Broadbent A, Fitzsimons JF, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 335(6066):303–308 Yang Y, Chiribella G, Hayashi M (2020) Communication cost of quantum processes. IEEE J Sel Areas Inf Theory 1(2):387–400 Sheng Y-B, Zhou L (2017) Distributed secure quantum machine learning. Sci Bull 62(14):1025–1029 Bondarenko D, Feldmann P (2020) Quantum autoencoders to denoise quantum data. Phys Rev Lett 124(13):130502 Achache T, Horesh L, Smolin J (2020) Denoising quantum states with Quantum Autoencoders–Theory and Applications . arXiv preprint arXiv:2012.14714 Nielsen MA, Chuang IL (1997) Programmable quantum gate arrays. Phys Rev Lett 79(2):321 Yang Y, Renner R, Chiribella G (2020) Optimal universal programming of unitary gates. Phys Rev Lett 125(21):210501 Choi M-D (1975) Completely positive linear maps on complex matrices. Linear Algebra Appl 10(3):285–290 Jamiołkowski A (1972) Linear transformations which preserve trace and positive semidefiniteness of operators. Rep Math Phys 3(4):275–278 Nielsen MA, Chuang I (2002) Quantum computation and quantum information. American Association of Physics Teachers Chiribella G, D’Ariano GM, Perinotti P (2008) Transforming quantum operations: Quantum supermaps. EPL Europhys Lett 83(3):30004 Chiribella G, D’Ariano GM, Perinotti P (2009) Theoretical framework for quantum networks. Phys Rev A 80(2):022339 Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys 15(12):1273–1278 Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 Debnath S, Linke NM, Figgatt C, Landsman KA, Wright K, Monroe C (2016) Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614):63–66 Kiefer J, Wolfowitz J et al (1952) Stochastic estimation of the maximum of a regression function. Ann Math Stat 23(3):462–466 McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018) Barren plateaus in quantum neural network training landscapes. Nat Commun 9(1):4812 Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Halavati R, Niu MY, Zlokapa A et al (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint arXiv:2003.02989 Baxter RJ (2007) Exactly Solved Models in Statistical Mechanics. Courier Corporation Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Ann Intern Med 110(11):916–921 Bisio A, Chiribella G, D’Ariano GM, Facchini S, Perinotti P (2010) Optimal quantum learning of a unitary transformation. Phys Rev A 81(3):032324 Mo Y, Chiribella G (2019) Quantum-enhanced learning of rotations about an unknown direction. New J Phys 21(11):113003 Sedlák M, Ziman M (2020) Probabilistic storage and retrieval of qubit phase gates. Phys Rev A 102(3):032618 Bishop LS, Bravyi S, Cross A, Gambetta JM, Smolin J (2017) Quantum volume. Quantum Volume, Technical Report Moll N, Barkoutsos P, Bishop LS, Chow JM, Cross A, Egger DJ, Filipp S, Fuhrer A, Gambetta JM, Ganzhorn M et al (2018) Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci Technol 3(3):030503 Allen-Zhu Z (2017) Natasha 2: Faster non-convex optimization than sgd. arXiv preprint arXiv:1708.08694 Sweke R, Wilde F, Meyer JJ, Schuld M, Fährmann PK, Meynard-Piganeau B, Eisert J (2020) Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4:314 Developers Cirq (2022). Cirq Zenodo. https://doi.org/10.5281/ZENODO.7465577 Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Physical Review A 98(3):032309