Quantum autoencoders for communication-efficient cloud computing
Tóm tắt
In the model of quantum cloud computing, the server executes a computation on the quantum data provided by the client. In this scenario, it is important to reduce the amount of quantum communication between the client and the server. A possible approach is to transform the desired computation into a compressed version that acts on a smaller number of qubits, thereby reducing the amount of data exchanged between the client and the server. Here we propose quantum autoencoders for quantum gates (QAEGate) as a method for compressing quantum computations. We illustrate it in concrete scenarios of single-round and multi-round communication and validate it through numerical experiments. A bonus of our method is it does not reveal any information about the server’s computation other than the information present in the output.
Tài liệu tham khảo
Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79
Arute F et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–510
Zhong H-S et al (2020) Quantum computational advantage using photons. Science 370(6523):1460–1463
Broadbent A, Fitzsimons J, Kashefi E (2009) Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, pp 517–526
Arrighi P, Salvail L (2006) Blind quantum computation. Int J Quantum Inf 4(05):883–898
Morimae T, Fujii K (2013) Blind quantum computation protocol in which alice only makes measurements. Phys Rev A 87(5):050301
Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117
Romero J, Olson JP, Aspuru-Guzik A (2017) Quantum autoencoders for efficient compression of quantum data. Quantum Sci Technol 2(4):045001
Bottou L (2012) Stochastic gradient descent tricks. In: Neural Networks: Tricks of the Trade. Springer, pp 421–436
Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I et al (2010) A view of cloud computing. Commun ACM 53(4):50–58
Barz S, Kashefi E, Broadbent A, Fitzsimons JF, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 335(6066):303–308
Yang Y, Chiribella G, Hayashi M (2020) Communication cost of quantum processes. IEEE J Sel Areas Inf Theory 1(2):387–400
Sheng Y-B, Zhou L (2017) Distributed secure quantum machine learning. Sci Bull 62(14):1025–1029
Bondarenko D, Feldmann P (2020) Quantum autoencoders to denoise quantum data. Phys Rev Lett 124(13):130502
Achache T, Horesh L, Smolin J (2020) Denoising quantum states with Quantum Autoencoders–Theory and Applications . arXiv preprint arXiv:2012.14714
Nielsen MA, Chuang IL (1997) Programmable quantum gate arrays. Phys Rev Lett 79(2):321
Yang Y, Renner R, Chiribella G (2020) Optimal universal programming of unitary gates. Phys Rev Lett 125(21):210501
Choi M-D (1975) Completely positive linear maps on complex matrices. Linear Algebra Appl 10(3):285–290
Jamiołkowski A (1972) Linear transformations which preserve trace and positive semidefiniteness of operators. Rep Math Phys 3(4):275–278
Nielsen MA, Chuang I (2002) Quantum computation and quantum information. American Association of Physics Teachers
Chiribella G, D’Ariano GM, Perinotti P (2008) Transforming quantum operations: Quantum supermaps. EPL Europhys Lett 83(3):30004
Chiribella G, D’Ariano GM, Perinotti P (2009) Theoretical framework for quantum networks. Phys Rev A 80(2):022339
Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys 15(12):1273–1278
Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028
Debnath S, Linke NM, Figgatt C, Landsman KA, Wright K, Monroe C (2016) Demonstration of a small programmable quantum computer with atomic qubits. Nature 536(7614):63–66
Kiefer J, Wolfowitz J et al (1952) Stochastic estimation of the maximum of a regression function. Ann Math Stat 23(3):462–466
McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018) Barren plateaus in quantum neural network training landscapes. Nat Commun 9(1):4812
Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Halavati R, Niu MY, Zlokapa A et al (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint arXiv:2003.02989
Baxter RJ (2007) Exactly Solved Models in Statistical Mechanics. Courier Corporation
Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Ann Intern Med 110(11):916–921
Bisio A, Chiribella G, D’Ariano GM, Facchini S, Perinotti P (2010) Optimal quantum learning of a unitary transformation. Phys Rev A 81(3):032324
Mo Y, Chiribella G (2019) Quantum-enhanced learning of rotations about an unknown direction. New J Phys 21(11):113003
Sedlák M, Ziman M (2020) Probabilistic storage and retrieval of qubit phase gates. Phys Rev A 102(3):032618
Bishop LS, Bravyi S, Cross A, Gambetta JM, Smolin J (2017) Quantum volume. Quantum Volume, Technical Report
Moll N, Barkoutsos P, Bishop LS, Chow JM, Cross A, Egger DJ, Filipp S, Fuhrer A, Gambetta JM, Ganzhorn M et al (2018) Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci Technol 3(3):030503
Allen-Zhu Z (2017) Natasha 2: Faster non-convex optimization than sgd. arXiv preprint arXiv:1708.08694
Sweke R, Wilde F, Meyer JJ, Schuld M, Fährmann PK, Meynard-Piganeau B, Eisert J (2020) Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4:314
Developers Cirq (2022). Cirq Zenodo. https://doi.org/10.5281/ZENODO.7465577
Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Physical Review A 98(3):032309