Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics

American Association for the Advancement of Science (AAAS) - Tập 307 Số 5709 - Trang 538-544 - 2005
Xavier Michalet1,2,3,4, Fabien Pinaud1,2,3,4, Laurent A. Bentolila1,2,3,4, James M. Tsay1,2,3,4, Sören Doose1,2,3,4, J. J. Li1,2,3,4, Gobalakrishnan Sundaresan1,3,4, Anna M. Wu1,3,4, Sanjiv S. Gambhir1,3,4, Shimon Weiss1,2,3,4
1Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, 700 Westwood Plaza, Los Angeles, CA 90095, USA.
2Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
3Department of Physiology, David Geffen School of Medicine, University of California, 700 Westwood Plaza, Los Angeles, CA 90095, USA.
4Department of Radiology and Bio-X Program, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA.

Tóm tắt

Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

Từ khóa


Tài liệu tham khảo

X. Michalet et al., Annu. Rev. Biophys. Biomol. Struct.32, 161 (2003).

10.1126/science.300.5616.75

10.1126/science.283.5408.1676

10.1126/science.271.5251.933

A. L. Efros, M. Rosen, Annu. Rev. Mater. Sci.30, 475 (2000).

M. Dahan et al., Opt. Lett.26, 825 (2001).

10.1038/383802a0

P. Reiss, J. Bleuse, A. Pron, Nano Lett.2, 781 (2002).

A. Sukhanova et al., Anal. Biochem.324, 60 (2004).

10.1073/pnas.170286097

X. Michalet et al., Single Mol.2, 261 (2001).

F. Pinaud X. Michalet E. Margeat H. P. Moore S. Weiss unpublished data.

10.1126/science.1088525

S. Hohng, T. Ha, J. Am. Chem. Soc.126, 1324 (2004).

S. A. Empedocles, D. J. Norris, M. G. Bawendi, Phys. Rev. Lett.77, 3873 (1996).

A. M. Kapitonov et al., J. Phys. Chem. B103, 10109 (1999).

10.1126/science.1083780

S. Doose J. M. Tsay F. Pinaud S. Weiss unpublished data.

I. L. Medintz et al., Nature Mater.2, 630 (2003).

10.1126/science.281.5385.2016

S. Pathak, S. K. Choi, N. Arnheim, M. E. Thompson, J. Am. Chem. Soc.123, 4103 (2001).

S. Kim, M. G. Bawendi, J. Am. Chem. Soc.125, 14652 (2003).

W. Guo, J. J. Li, Y. A. Wang, X. G. Peng, Chem. Mater.15, 3125 (2003).

F. Pinaud, D. King, H.-P. Moore, S. Weiss, J. Am. Chem. Soc.126, 6115 (2004).

10.1038/nbt764

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nature Biotechnol.22, 969 (2004).

10.1126/science.281.5385.2013

10.1021/jp0105488

10.1126/science.1077194

10.1117/1.1506706

T. Pellegrino et al., Nano Lett.4, 703 (2004).

F. Osaki, T. Kanamori, S. Sando, T. Sera, Y. Aoyama, J. Am. Chem. Soc.126, 6520 (2004).

H. Mattoussi et al., J. Am. Chem. Soc.122, 12142 (2000).

A. L. Rogach et al., Phys. Status Solidi B224, 153 (2001).

N. Gaponik et al., J. Phys. Chem. B106, 7177 (2002).

F. Patolsky et al., J. Am. Chem. Soc.125, 13918 (2003).

M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, E. Ruoslahti, Proc. Natl. Acad. Sci. U.S.A.99, 12617 (2002).

G. P. Mitchell, C. A. Mirkin, R. L. Letsinger, J. Am. Chem. Soc.121, 8122 (1999).

E. R. Goldman et al., Anal. Chem.74, 841 (2002).

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon, Nature Biotechnol.21, 47 (2003).

A. Mansson et al., Biochem. Biophys. Res. Commun.314, 529 (2004).

C. T. Dameron et al., Nature338, 596 (1989).

10.1038/35015043

A. P. Alivisatos, Nature Biotechnol.22, 47 (2004).

F. Tokumasu, J. Dvorak, J. Microsc.211, 256 (2003).

D. S. Lidke et al., Nature Biotechnol.22, 198 (2004).

Y. Xiao, P. E. Barker, Nucleic Acids Res.32, 28E (2004).

L. A. Bentolila S. Weiss unpublished data.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, A. S. Waggoner, Bioconjug. Chem.15, 79 (2004).

L. C. Mattheakis et al., Anal. Biochem.327, 200 (2004).

T. Pellegrino et al., Differentiation71, 542 (2003).

J. A. Kloepfer et al., Appl. Environ. Microbiol.69, 4205 (2003).

W. J. Parak et al., Adv. Mater.14, 882 (2002).

10.1002/adma.200306111

K. Hanaki et al., Biochem. Biophys. Res. Commun.302, 496 (2003).

J. O. Winter, T. Y. Liu, B. A. Korgel, C. E. Schmidt, Adv. Mater.13, 1673 (2001).

A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett.4, 11 (2004).

S. J. Rosenthal et al., J. Am. Chem. Soc.124, 4586 (2002).

Y. T. Lim et al., Mol. Imaging2, 50 (2003).

S. Kim et al., Nature Biotechnol.22, 93 (2004).

10.1038/35039577

F. V. Mikulec et al., J. Am. Chem. Soc.122, 2532 (2000).

R. E. Bailey, S. M. Nie, J. Am. Chem. Soc.125, 7100 (2003).

10.1126/science.1097830

J. M. Tsay S. Doose F. Pinaud J. J. Li S. Weiss J. Phys. Chem. B in press.

S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, H. Weller, Nano Lett.4, 693 (2004).

10.1021/ja017687n

A. N. Kapanidis, Y. W. Ebright, R. H. Ebright, J. Am. Chem. Soc.123, 12123 (2001).

A. Keppler, H. Pick, C. Arrivoli, H. Vogel, K. Johnsson, Proc. Natl. Acad. Sci. U.S.A.101, 9955 (2004).

J. Yin, F. Liu, X. Li, C. T. Walsh, J. Am. Chem. Soc.126, 7754 (2004).

E. T. Boder, K. S. Midelfort, K. D. Wittrup, Proc. Natl. Acad. Sci. U.S.A.97, 10701 (2000).

K. M. Marks, M. Rosinov, G. P. Nolan, Chem. Biol.11, 347 (2004).

A. G. Tkachenko et al., Bioconjug. Chem.15, 482 (2004).

D. Ishii et al., Nature423, 628 (2003).

D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Cancer Lett.209, 171 (2004).

W. W. Yu, J. C. Falkner, B. S. Shih, V. L. Colvin, Chem. Mater.16, 3318 (2004).

A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, A. P. Alivisatos, Appl. Phys. Lett.69, 1432 (1996).

A. A. Guzelian et al., J. Phys. Chem.100, 7212 (1996).

W. W. Yu, X. Peng, Angew. Chem. Int. Ed.41, 2368 (2002).

W. W. Yu, Y. A. Wang, X. Peng, Chem. Mater.15, 4300 (2003).

W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater.16, 560 (2004).

J. M. Tsay, M. Pflughoefft, L. A. Bentolila, S. Weiss, J. Am. Chem. Soc.126, 1926 (2004).

Supported by NIH grant 5-R01-EB000312 Keck Foundation grant 04074070 and Defense Advanced Research Projects Agency–Air Force Office of Scientific Research grant FA955004-10048. We are grateful for exchanges with our collaborators D. King H.-P. Moore A. P. Alivisatos C. A. Larabell D. Gerion O. N. Witte L. H. Rome and G. Payne. Fluorescence microscopy images in Fig. 3 were obtained at the California NanoSystems Institute Advanced Light Microscopy/Spectroscopy Shared Facility (ALMSSF) Department of Chemistry and Biochemistry at UCLA. We thank K. Hamadani G. Iyer and the referees for helpful comments on the manuscript; E. Margeat for help with the experiments described in Fig. 3; and T. Olafsen for help with the experiments described in Fig. 4 A and B. Requests for materials should be sent to [email protected].