Quantum Confinement and Thickness‐Dependent Electron Transport in Solution‐Processed In2O3 Transistors

Advanced Electronic Materials - Tập 6 Số 11 - 2020
Ivan Isakov1, Hendrik Faber2, Alexander D. Mottram1, Satyajit Das1, Max Grell1, Anna Regoutz3, Rebecca Kilmurray4, Martyn A. McLachlan4, David J. Payne4, Thomas D. Anthopoulos1,2
1Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
2King Abdullah University of Science and Technology (KAUST) KAUST Solar Center and Physical Science and Engineering Division (PSE) Thuwal 23955–6900 Saudi Arabia
3Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
4Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, UK

Tóm tắt

Abstract

The dependence of charge carrier mobility on semiconductor channel thickness in field‐effect transistors is a universal phenomenon that has been studied extensively for various families of materials. Surprisingly, analogous studies involving metal oxide semiconductors are relatively scarce. Here, spray‐deposited In2O3 layers are employed as the model semiconductor system to study the impact of layer thickness on quantum confinement and electron transport along the transistor channel. The results reveal an exponential increase of the in‐plane electron mobility (µe) with increasing In2O3 thickness up to ≈10 nm, beyond which it plateaus at a maximum value of ≈35 cm2 V−1 s−1. Optical spectroscopy measurements performed on In2O3 layers reveal the emergence of quantum confinement for thickness <10 nm, which coincides with the thickness that µe starts deteriorating. By combining two‐ and four‐probe field‐effect mobility measurements with high‐resolution atomic force microscopy, it is shown that the reduction in µe is attributed primarily to surface scattering. The study provides important guidelines for the design of next generation metal oxide thin‐film transistors.

Từ khóa


Tài liệu tham khảo

10.1038/natrevmats.2016.52

10.1016/j.pmatsci.2014.06.003

10.1016/S0079-6786(97)80886-2

10.1038/nature03090

10.1126/science.286.5440.746

Abe K., 2012, Phys. Rev. B, 86, 081202(R), 10.1103/PhysRevB.86.081202

10.1039/D0MA00072H

10.1002/adma.201301622

10.1002/adfm.201403862

10.1002/adfm.201902591

10.1002/adma.201804120

10.1002/adma.201400529

10.1039/C6TC04907A

10.1002/adma.201801079

10.1889/JSID18.10.749

Chleirigh C. N., 2008, IEEE Trans. Electron Devices, 55, 2687, 10.1109/TED.2008.2003228

10.1063/1.98305

10.1021/nl4010783

10.1002/adma.200402077

10.1103/PhysRevLett.92.116802

10.1021/acs.jpcc.6b03964

10.1149/1.3555070

10.1016/0040-6090(86)90143-4

10.1063/1.4801892

10.1021/am5072139

10.1002/adfm.201606407

10.1063/1.3589371

10.1109/TED.2011.2155910

10.1002/adfm.201503940

10.1063/1.4914296

10.1063/1.2990657

10.1021/cr3000626

10.1002/pssb.2221000253

10.1016/0003-4916(81)90250-5

10.1103/PhysRevB.77.115449

10.1063/1.362953

10.1002/0470068329

10.1002/adfm.201503732

10.1002/advs.201500058

10.1103/PhysRevLett.100.167402

10.1103/PhysRevLett.101.116808

10.1103/PhysRevB.88.085305

10.1007/978-0-387-29185-7_42

10.1103/RevModPhys.54.437