Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

BMC Microbiology - Tập 10 - Trang 1-20 - 2010
Menggen Ma1,2, Lewis Z Liu1
1Bioenergy Research, National Center for Agricultural Utilization Research USDA-ARS, Peoria, USA
2Department of Computer Science, New Mexico State University, Las Cruces, USA.

Tóm tắt

Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Enriched background of transcription abundance and enhanced expressions of ethanol-tolerance genes associated with heat shock proteins, trehalose-glycolysis-pentose phosphate pathways and PDR gene family are accountable for the tolerant yeast to withstand the ethanol stress, maintain active metabolisms, and complete ethanol fermentation under the ethanol stress. Transcription factor Msn4p appeared to be a key regulator of gene interactions for ethanol-tolerance in the tolerant yeast Y-50316.

Tài liệu tham khảo

Bothast RJ, Saha BC: Ethanol production from agricultural biomass substrate. Adv Appl Microbiol. 1997, 44: 261-286. full_text. Liu ZL, Saha BC, Slininger PJ: Lignocellulose biomass conversion to ethanol by Saccharomyces. Bioenergy. Edited by: Wall J, Harwood C, Demain A. 2008, ASM Press, Washington, DC, 17-36. Outlaw J, Collins K, Duffield J: Agriculture as a producer and consumer of energy. 2005, CAB International, Wallingford, UK Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008, 99: 5270-5295. 10.1016/j.biortech.2007.11.013. Wall JD, Harwood CS, Demain A: Bioenergy. 2008, ASM Press. Washington, DC, USA Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56: 17-34. 10.1007/s002530100624. Maiorella BL, Blanch HW, Wilke CR: Economic evaluation of alternative ethanol fermentation processes. Biotechnol Bioeng. 1984, 16: 1003-1025. 10.1002/bit.260260902. Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M: Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol. 2004, 110: 287-293. 10.1016/j.jbiotec.2004.01.017. Gasch AP, Werner-Washburne M: The genomics of yeast responses to environmental stress and starvation. Funct Integr Genom. 2002, 2: 181-192. 10.1007/s10142-002-0058-2. Pina C, António J, Hogg T: Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol Lett. 2004, 26: 1521-1527. 10.1023/B:BILE.0000044456.72347.9f. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin S: Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 2001, 498: 98-103. 10.1016/S0014-5793(01)02503-0. Chandler M, Stanley GA, Rogers P, Chambers P: A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol. 2004, 54: 427-454. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S: Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol. 2007, 131: 34-44. 10.1016/j.jbiotec.2007.05.010. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H: Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 2009, 9: 32-44. 10.1111/j.1567-1364.2008.00456.x. Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H: Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst Eng. 2009, 32: 681-688. 10.1007/s00449-008-0292-7. Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJJ: Dynamics of the yeast transcriptome during wine fermentation reveals a novel stress response. FEMS Yeast Res. 2008, 8: 35-52. 10.1111/j.1567-1364.2007.00338.x. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shiomoi H, Ito K: Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng. 2000, 90: 313-320. Rossignol T, Dulau L, Julien A, Blondin B: Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast. 2003, 20: 1369-1385. 10.1002/yea.1046. Shobayashi M, Ukena E, Fujii T, Iefuji H: Genome-wide expression profiles of sake brewing yeast under shocking and static conditions. Biosci Biotechnol Biochem. 2007, 71: 323-335. 10.1271/bbb.60190. Varela CJ, Cardenas J, Melo F, Agosin E: Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast. 2005, 22: 369-383. 10.1002/yea.1217. Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H: Global gene expression analysis of yeast cells during sake brewing. Appl Environ Microbiol. 2006, 72: 7353-7358. 10.1128/AEM.01097-06. Piper PW, Talreja K, Panareton B, Moradas-Ferreira P, Byrne K, Prnekelt UM, Meacock P, Reenacq M, Boucherie H: Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane HSP30, by ethanol levels above a critical-threshold. Microbiology. 1994, 140: 3031-3038. 10.1099/13500872-140-11-3031. Zuzuarregui A, Monteoliva L, Gil C, del Olmo M: Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol. 2006, 72: 836-847. 10.1128/AEM.72.1.836-847.2006. Mansure JJC, Panek AD, Crowe LM, Crowe JH: Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim Biophys Acta. 1994, 1191: 309-316. 10.1016/0005-2736(94)90181-3. Takagi H, Takaoka M, Kawaguchi A, Kubo Y: Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol. 2005, 71: 8656-8662. 10.1128/AEM.71.12.8656-8662.2005. Chi Z, Arneborg N: Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol. 1999, 86: 1047-1052. 10.1046/j.1365-2672.1999.00793.x. Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H: Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE. 2008, 3: e2623-10.1371/journal.pone.0002623. Inoue T, Iefuji H, Fujii T, Soga H, Satoh K: Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci Biotechnol Biochem. 2000, 64: 229-236. 10.1271/bbb.64.229. Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D: Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem. 2004, 68: 968-972. 10.1271/bbb.68.968. You KM, Rosenfield CL, Knipple DC: Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol. 2003, 69: 1499-1503. 10.1128/AEM.69.3.1499-1503.2003. Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW: Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics. 2007, 175: 1479-1487. 10.1534/genetics.106.065292. Liu ZL: Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006, 73: 27-36. 10.1007/s00253-006-0567-3. Liu ZL, Slininger PJ, Gorsich S: Enhanced biotransformation of furfural and 5-hydroxy methylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol. 2005, 121-124: 451-460. 10.1385/ABAB:121:1-3:0451. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW: Adaptive response of yeasts to furfural and 5- hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol. 2004, 31: 345-352. Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U: Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5: 569-578. 10.1016/j.femsyr.2004.10.010. Wei P, Li Z, Lin Y, He P, Jiang N: Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Biotechnol Lett. 2007, 29: 1501-1508. 10.1007/s10529-007-9419-1. Liu ZL, Ma M, Song M: Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009, 282: 233-244. 10.1007/s00438-009-0461-7. Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber SA: Multiple gene mediated NAD(P)H dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008, 81: 743-753. 10.1007/s00253-008-1702-0. Applied Biosystems: Absolute quantification getting started guide for the 7300/7500 system. Applied Biosystems. 2004 Liu ZL, Palmquist DE, Ma M, Liu J, Alexander NJ: Application of a master equation for quantitative mRNA analysis using qRT-PCR. J Biotechnol. 2009, 143: 10-16. 10.1016/j.jbiotec.2009.06.006. Liu ZL, Slininger PJ: Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR. J Microbiol Methods. 2007, 68: 486-496. 10.1016/j.mimet.2006.10.014. Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elespuru R, Fero M, Foy C, Fuscoe J, Gao X, Gerhold DL, Gilles P, Goodsaid F, Guo X, Hackett J, Hockett RD, Ikonomi P, Irizarry RA, Kawasaki ES, Kaysser-Kranich T, Kerr K, Kiser G, Koch WH, Lee KY, Liu C, Liu ZL, Lucas A, Manohar CF, Miyada G, Modrusan Z, Parkes H, Puri RK, Reid L, Ryder TB, Salit M, Samaha RR, Scherf U, Sendera TJ, Setterquist RA, Shi L, Shippy R, Soriano JV, Wagar EA, Warrington JA, Williams M, Wilmer F, Wilson M, Wolber PK, Wu X, Zadro R: The external RNA controls consortium: a progress report. Nat Methods. 2005, 2: 731-734. 10.1038/nmeth1005-731. Ellefsen S, Stenslokken KO, Sandvik GK, Kristensen TA, Nilsson GE: Improved normalization of real-time reverse transcriptase polymerase chain reaction data using an external RNA control. Anal Biochem. 2008, 376: 83-93. 10.1016/j.ab.2008.01.028. Kakuhata R, Wasahiro M, Yamamoto T, Akamine R, Yamazaki N, Kataoka M, Fukuoka S, Ishikawa M, Ooie T, Baba Y, Hori T, Shinohara Y: Possible utilization of in vitro synthesized mRNA specifically expressed in certain tissues as standards for quantitative evaluation of the results of microarray analysis. J Biochem Biophys Methods. 2007, 70: 755-760. 10.1016/j.jbbm.2007.04.004. Reid LH, Lucas AB, Kopf-Sill AR, Chen B, Bromley B, Foy C, Hinkel CS, Boysen C, Liu CM, Ranamukha-arachchi D, Wagar E, Kawasaki ES, Goodsaid FM, Wilmer F, Fischer G, Kiser GL, Causton HC, Fuscoe JC, Brenton JD, Warrington JA, Soriano J, Coller J, Burrill JD, Rhodes K, Kerr KF, Zoon KC, Lee K, Shi LM, Salit M, Satterfield M, Marton M, Cronin M, Conley MP, Williams M, Fero M, Wilson M, Novoradovskaya N, Gilles P, Wolber PK, Ikonomi P, Puri R, Beyer RP, Shippy R, Setterquist R, Elespuru RK, Baker SC, Chervitz SA, Bauer SR, Russell S, Kaysser Kranich T, Bammler TK, Ryder TB, Sendera TJ, Scherf U, Gao XL, Wu XN, Guo X, Liu ZL: Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics. 2005, 6: 150-10.1186/1471-2164-6-150. Applied Biosystem: Amplification efficiency of Taqman gene expression assays. 2006, Application Note Publication 127AP05-03 Barber RD, Harmer DW, Coleman RA, Clark BJ: GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 2005, 21: 389-395. 10.1152/physiolgenomics.00025.2005. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA: An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol. 2009, 5: 275-10.1038/msb.2009.26. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J: Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell. 2007, 131: 121-135. 10.1016/j.cell.2007.07.036. Young JC, Agashe VR, Siegers K, Hartl FU: Pathways of chaperone mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004, 5: 781-791. 10.1038/nrm1492. Parsell DA, Kowal AS, Singer MA, Lindquist S: Protein disaggregation mediated by heat-shock protein Hsp104. Nature. 1994, 372: 475-478. 10.1038/372475a0. Picard D: Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002, 59: 1640-1648. 10.1007/PL00012491. Prodromou C, Pearl LH: Structure and functional relationships of Hsp90. Curr Cancer Drug Targets. 2003, 3: 301-323. 10.2174/1568009033481877. Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B: The proteome of a wine yeast strain during fermentation correlation with the transcriptome. J Appl Microbiol. 2009, 107: 47-55. 10.1111/j.1365-2672.2009.04156.x. Ma M, Liu ZL: Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010, 87: 829-845. Singer MA, Lindguist S: Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998, 1: 639-648. 10.1016/S1097-2765(00)80064-7. Sebollela A, Louzada PR, Sola-Penna M, Sarrone-Williams V, Coelho-Sampaio T, Ferreira ST: Inhibition of yeast glutathione reductase by trehalose: possible implications in yeast survival and recovery from stress. Int J Biochem Cell Biol. 2004, 36: 900-908. 10.1016/j.biocel.2003.10.006. Bruinenberg PM, van Dijken JP, Scheffers WA: A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol. 1983, 129: 953-964. Hou J, Lages NF, Oldiges M, Vemuri GN: Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng. 2009, 11: 253-261. 10.1016/j.ymben.2009.05.001. Gulshan K, Moye-Rowley WS: Multidrug Resistance in Fungi. Eukaryot Cell. 2007, 6: 1933-1942. 10.1128/EC.00254-07. Song M, Ouyang Z, Liu ZL: Discrete dynamic system modeling for gene regulatory networks of HMF tolerance for ethanologenic yeast. IET Sys Biology. 2009, 3: 203-218. 10.1049/iet-syb.2008.0089. Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K: The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol. 2002, 46: 1429-1440. 10.1046/j.1365-2958.2002.03262.x. Takemori Y, Sakaguchi A, Matsuda S, Mizukami Y, Sakurai H: Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol Genet Genomics. 2006, 275: 89-96. 10.1007/s00438-005-0065-9. Marchler G, Schuller C, Adam G, Ruis H: A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 1993, 12: 1997-2003. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H: The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 1994, 13: 4382-4389. Berry DB, Gasch AP: Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell. 2008, 19: 4580-4587. 10.1091/mbc.E07-07-0680. Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H: Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng. 2007, 104: 163-170. 10.1263/jbb.104.163. Watanabe M, Watanabe D, Akao T, Shimoi H: Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng. 2009, 107: 516-518. 10.1016/j.jbiosc.2009.01.006. Wu WS, Li WH: Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics. 2008, 9: 439-10.1186/1471-2164-9-439. Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H: A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast. 1998, 14: 1041-1050. 10.1002/(SICI)1097-0061(199808)14:11<1041::AID-YEA296>3.0.CO;2-4. Kurtzman CP, Robnett CJ: Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek. 1998, 73: 331-371. 10.1023/A:1001761008817. Rozen S, Skaletsky H: Bioinformatics methods and protocols. Methods in molecular biology. Edited by: Krawetz S, Misener S. 2000, Humana Press, Totowa, 365-386. Fisk DG, Ball CA, Dolinski K, Engel SR, Hong EL, Issel-Tarver L, Schwartz K, Sethuraman A, Botstein D, Cherry JM: Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast. 2006, 23: 857-865. 10.1002/yea.1400. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Earle-Hughes J, Snesrud E, Lee N, Quackenbush J: A concise guide to cDNA microarray analysis. BioTechniques. 2000, 29: 548-562. Staroscik A: Calculator for determining the number of copies of a template. 2004,http://www.uri.edu/research/gsc/resources/cndna.html Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sá-Correia I: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucl Acids Res. 2006, 34: D446-451. 10.1093/nar/gkj013.