Phân tích các locus tính trạng định lượng cho sự kháng bệnh Cephalosporium stripe, một bệnh héo mạch mạch của lúa mì

Theoretical and Applied Genetics - Tập 122 - Trang 1339-1349 - 2011
Martin C. Quincke1,2, C. James Peterson1,3, Robert S. Zemetra4, Jennifer L. Hansen5, Jianli Chen6, Oscar Riera-Lizarazu1,7, Christopher C. Mundt8
1Department of Crop and Soil Science, Oregon State University, Corvallis, USA
2INIA La Estanzuela, Colonia, Uruguay
3Limagrain Cereals Seeds, Fort Collins, USA
4Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, USA
5Department of Crop and Soil Science, Washington State University, Pullman, USA
6Department of Plant, Soil and Entomological Sciences, University of Idaho Aberdeen Research and Extension Center, Aberdeen, USA
7ICRISAT, Patancheru, India
8Department of Botany and Plant Pathology, Oregon State University, Corvallis, USA

Tóm tắt

Cephalosporium stripe, do Cephalosporium gramineum gây ra, có thể gây thiệt hại nghiêm trọng cho năng suất và chất lượng hạt lúa mì (Triticum aestivum L.) và có thể là một yếu tố quan trọng giới hạn việc áp dụng các biện pháp canh tác bảo tồn. Việc chọn giống kháng Cephalosporium stripe gặp nhiều khó khăn; tuy nhiên, các điều kiện tối ưu cho bệnh không xảy ra hàng năm dưới điều kiện tự nhiên, mức độ nhiễm khuẩn có thể không đồng nhất về không gian, và rất ít điều được biết về di truyền kháng bệnh. Một quần thể gồm 268 dòng thuần hợp số lượng tái tổ hợp (RILs) được tạo ra từ sự giao phấn giữa hai giống lúa mì đã được đặc trưng thông qua việc sàng lọc thực địa và các dấu ấn phân tử nhằm điều tra di truyền kháng Cephalosporium stripe. Các đầu mạch trắng (đầu mạch vô tính do nhiễm bệnh) đã được đo trên mỗi RIL ở ba môi trường thực địa dưới điều kiện được nhiễm khuẩn nhân tạo. Một bản đồ liên kết cho quần thể này đã được xây dựng dựa trên 204 dấu ấn SSR và DArT. Tổng cộng có 36 nhóm liên kết đã được xác định, đại diện cho nhiều phần của tất cả các nhiễm sắc thể ngoại trừ nhiễm sắc thể 1D, do thiếu số lượng dấu ấn đa hình đủ. Phân tích locus tính trạng định lượng (QTL) đã xác định bảy vùng liên quan đến sự kháng Cephalosporium stripe, với ảnh hưởng cộng gộp gần như bằng nhau. Bốn QTL từ giống cha mẹ có độ nhạy cảm cao hơn (Brundage) và ba QTL từ giống cha mẹ có độ kháng cao hơn (Coda), nhưng tác động cộng gộp của QTL từ Coda lớn hơn của Brundage. Tính cộng dồn của các tác động QTL đã được xác nhận thông qua phân tích hồi quy và thể hiện lợi thế của việc tích lũy nhiều alen QTL để đạt được mức độ kháng cao.

Từ khóa

#Cephalosporium stripe #lúa mì #QTL #di truyền kháng #SSR #DArT

Tài liệu tham khảo

Allan RE, Morris CF, Line RF, Anderson JA, Walker-Simmons MK, Donaldson E (2000) Registration of ‘Coda’ club wheat. Crop Sci 40:578–579 Bailey JE, Lockwood JL, Wiese MV (1982) Infection of wheat by Cephalosporium gramineum as influenced by freezing of roots. Phytopathology 72:1324–1328 Blank CA, Murray TD (1998) Influence of pH and matric potential on germination of Cephalosporium gramineum conidia. Plant Dis 82:975–978 Bockus WW, O’Connor JP, Raymond PJ (1983) Effect of residue management method on incidence of Cephalosporium stripe under continuous winter wheat production. Plant Dis 67:1323–1324 Bockus WW, Davis MA, Todd TC (1994) Grain-yield responses of winter wheat coinoculated with Cephalosporium gramineum and Gaeumannomyces graminis var tritici. Plant Dis 78:11–14 Bovill WD, Horne M, Herde D, Davis M, Wildermuth GB, Sutherland MW (2010) Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet 121:127–136 Bruehl GW (1956) Cephalosporium stripe disease of wheat in Washington. Phytopathology 46:178–180 Bruehl GW (1957) Cephalosporium stripe disease of wheat. Phytopathology 47:641–649 Bruehl GW (1983) Nonspecific genetic-resistance to soilborne fungi. Phytopathology 73:948–951 Bruehl GW, Lai P (1968) Influence of soil pH and humidity on survival of Cephalosporium gramineum in infested wheat straw. Can J Plant Sci 48:245–252 Bruehl GW, Murray TD, Allan RE (1986) Resistance of winter wheats to Cephalosporium stripe in the field. Plant Dis 70:314–316 Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196 Creatura PJ, Safir GR, Scheffer RP, Sharkey TD (1981) Effects of Cephalosporium gramineum and a toxic metabolite on stomatal conductance of wheat. Physiol Plant Pathol 19:313–323 Douhan GW, Murray TD (2001) Infection of winter wheat by a beta-glucuronidase-transformed isolate of Cephalosporium gramineum. Phytopathology 91:232–239 Edwards JD, McCouch SR (2007) Molecular markers for use in plant molecular breeding and germplasm evaluation. In: Guimaraes E, Ruane J, Scherf B, Sonnino A, Dargie J (eds) Guimarês. Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 29–49 Ellingboe AH (1983) Genetic aspects of interaction between plant hosts and their soilborne pathogens. Phytopathology 73:941–944 Ellis JB, Everhart BM (1894) New species of fungi from various localities. Proc Acad Nat Sci Phila 46:322–386 Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463 Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MP, Kresovich S (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743 Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956 Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341 Gonzalez-Hernandez JL, Singh PK, Mergoum M, Adhikari TB, Kianian SF, Simsek S, Elias EM (2009) A quantitative trait locus on chromosome 5B controls resistance of Triticum turgidum (L.) var. diccocoides to Stagonospora nodorum blotch. Euphytica 166:199–206 Gul A, Allan RE (1972) Relation of club gene with yield and yield components of near-isogenic wheat lines. Crop Sci 12:297–301 Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390 Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:1–36 Hernandez-Delgado S, Reyes-Valdes MH, Rosa R, Mayek-Perez N (2009) Molecular markers associated with resistance to Macrophomina phaseolina (Tassi) Goid. in common bean. J Plant Pathol 91:163–170 Horvath DP, Dahleen LS, Stebbing JA, Penner G (1995) A codominant PCR-based marker for assisted selection of durable stem rust resistance in barley. Crop Sci 35:1445–1450 Johnson EB, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201 Johnston RH, Mathre DE (1972) Effect of infection by Cephalosporium gramineum on winter wheat. Crop Sci 12:817–819 Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216 Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95 Kim HJ, Nahm SH, Lee HR, Yoon GB, Kim KT, Kang BC, Choi D, Kweon O, Cho MC, Kwon JK, Han JH, Kim JH, Park M, Ahn J, Choi S, Her N, Sung JH, Kim BD (2008) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118:15–27 Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194 Kobayashi K, Ui T (1979) Phytotoxicity and anti-microbial activity of graminin A, produced by Cephalosporium gramineum, the causal agent of Cephalosporium stripe disease of wheat. Physiol Plant Pathol 14:129–133 Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites. Mol Ecol 10:1–16 Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144 Lai P, Bruehl GW (1966) Survival of Cephalosporium gramineum in naturally infested wheat straws in soil in the field and in the laboratory. Phytopathology 56:213–218 Latin RX, Harder RW, Wiese MV (1982) Incidence of Cephalosporium stripe as influenced by winter wheat management practices. Plant Dis 66:229–230 Lein JC, Sagstetter CM, Schulte D, Thurau T, Varrelmann M, Saal B, Koch G, Borchardt DC, Jung C (2008) Mapping of Rhizoctonia root rot resistance genes in sugar beet using pathogen response-related sequences as molecular markers. Plant Breed 127:602–611 Leonard JM, Watson CJW, Carter AH, Hansen JL, Zemetra RS, Santra DK, Campbell KG, Riera-Lizarazu O (2008) Identification of a candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pch1. Theor Appl Genet 116:261–270 Li HJ, Conner RL, Murray TD (2008) Resistance to soil-borne diseases of wheat: contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Can J Plant Sci 88:195–205 Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910 Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166 Liu ZH, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273 Marshall DR, Langridge P, Appels R (2001) Wheat breeding in the new century—preface. Aust J Agric Res 52:1–4 Martin JM, Mathre DE, Johnston RH (1983) Genetic variation for reaction to Cephalosporium gramineum in four crosses of winter wheat. Can J Plant Sci 63:623–630 Martin JM, Mathre DE, Johnston RH (1986) Winter wheat genotype responses to Cephalosporium gramineum inoculum levels. Plant Dis 70:421–423 Martin JM, Johnston RH, Mathre DE (1989) Factors affecting the severity of Cephalosporium stripe of winter wheat. Can J Plant Pathol 11:361–367 Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698 Mathre DE, Johnston RH (1975a) Cephalosporium stripe of winter wheat—procedures for determining host response. Crop Sci 15:591–594 Mathre DE, Johnston RH (1975b) Cephalosporium stripe of winter wheat: infection processes and host response. Phytopathology 65:1244–1249 Mathre DE, Johnston RH (1990) A crown barrier related to Cephalosporium stripe resistance in wheat relatives. Can J Bot 68:1511–1514 Mathre DE, Johnston RH, McGuire CF (1977) Cephalosporium stripe of winter wheat—pathogen virulence, sources of resistance, and effect on grain quality. Phytopathology 67:1142–1148 Mathre DE, Johnston RH, Martin JM (1985) Sources of resistance to Cephalosporium gramineum in Triticum and Agropyron species. Euphytica 34:419–424 Melchinger AE, Utz HF, Schon GC (2004) QTL analyses of complex traits with cross validation, bootstrapping and other biometric methods. Euphytica 137:1–11 Morton JB, Mathre DE (1980a) Identification of resistance to Cephalosporium stripe in winter wheat. Phytopathology 70:812–817 Morton JB, Mathre DE (1980b) Physiological effects of Cephalosporium gramineum on growth and yield of winter wheat cultivars. Phytopathology 70:807–811 Mundt CC (2002) Performance of wheat cultivars and cultivar mixtures in the presence of Cephalosporium stripe. Crop Prot 21:93–99 Murray T (2006) Seed transmission of Cephalosporium gramineum in winter wheat. Plant Dis 90:803–806 Murray TD, Walter CC, Anderegg JC (1992) Control of Cephalosporium stripe of winter wheat by liming. Plant Dis 76:282–286 Nisikado Y, Matsumoto H, Yamuti K (1934) Studies on a new Cephalosporium, which causes the stripe disease of wheat. Bericht des Ohara Instituts fur Landwirtschaftliche Forschungen 6:275–306 Pool RAF, Sharp EL (1969) Some environmental and cultural factors affecting Cephalosporium stripe of winter wheat. Plant Dis Reptr 53:898–902 Rahman M, Mundt CC, Wolpert TJ, Riera-Lizarazu O (2001) Sensitivity of wheat genotypes to a toxic fraction produced by Cephalosporium gramineum and correlation with disease susceptibility. Phytopathology 91:702–707 Raymond PJ, Bockus WW (1984) Effect of seeding date of winter wheat on incidence, severity, and yield loss caused by Cephalosporium stripe in Kansas. Plant Dis 68:665–667 Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res 52:1221–1234 Richardson MJ, Rennie WJ (1970) An estimate of the loss of yield caused by Cephalosporium gramineum in wheat. Plant Pathol 19:138–140 Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Phytopathology 98:215–221 Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542 Slope DB, Bardner R (1965) Cephalosporium stripe of wheat and root damage by insects. Plant Pathol 14:184–187 Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255 Spalding DH, Bruehl GW, Foster RJ (1961) Possible role of pectinolytic enzymes and polysaccharide in pathogenesis by Cephalosporium gramineum in wheat. Phytopathology 51:227–235 Specht LP, Murray TD (1990) Effects of root-wounding and inoculum density on Cephalosporium stripe in winter wheat. Phytopathology 80:1108–1114 Taguchi K, Ogata N, Kubo T, Kawasaki S, Mikami T (2009) Quantitative trait locus responsible for resistance to Aphanomyces root rot (black root) caused by Aphanomyces cochlioides Drechs. in sugar beet. Theor Appl Genet 118:227–234 Tang SX, Leon A, Bridges WC, Knapp SJ (2006) Quantitative trait loci for correlated seed traits are tightly linked to branching and pericarp pigment loci in sunflower. Crop Sci 46:721–734 Tomas A, Feng GH, Reeck GR, Bockus WW, Leach JE (1990) Purification of a cultivar-specific toxin from Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Mol Plant Microbe Interact 3:221–224 Tsunewaki K, Koba T (1979) Production and genetic-characterization of the co-isogenic lines of a common wheat Triticum aestivum CV. S-615 for ten major genes. Euphytica 28:579–592 Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270 Van Ooijen JW, Kyazma BV (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands Van Wert SL, Ravenscroft AV, Fulbright DW (1984) Screening wheat lines as seedlings for resistance to Cephalosporium gramineum. Plant Dis 68:1036–1038 Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182 Wiese MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407 Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501 Zemetra RS, Souza EJ, Lauver M, Windes J, Guy SO, Brown B, Robertson L, Kruk M (1998) Registration of ‘Brundage’ wheat. Crop Sci 38:1404 Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468 Zwer PK, Sombrero A, Rickman RW, Klepper B (1995) Club and common wheat yield component and spike development in the Pacific Northwest. Crop Sci 35:1590–1597