Quantitative proteomic analysis of pear (Pyrus pyrifolia cv. “Hosui”) flesh provides novel insights about development and quality characteristics of fruit
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22(13):1207–1212. https://doi.org/10.1016/j.cub.2012.04.064
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Gene Ontology C (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556
Beis K (2015) Structural basis for the mechanism of ABC transporters. Biochem Soc Trans 43:889–893. https://doi.org/10.1042/bst20150047
Bell RL, Janick J (1990) Quantitative genetic analysis of fruit quality in pear. J Am Soc Hortic Sci 115(5):829–834
Bianco L, Lopez L, Scalone AG, Di Carli M, Desiderio A, Benvenuto E, Perrotta G (2009) Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. J Proteom 72(4):586–607. https://doi.org/10.1016/j.jprot.2008.11.019
Cai Y, Li G, Nie J, Lin Y, Nie F, Zhang J, Xu Y (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic 125(3):374–379. https://doi.org/10.1016/j.scienta.2010.04.029
Chen JQ, Lu JH, He ZS, Zhang F, Zhang SL, Zhang HP (2020) Investigations into the production of volatile compounds in Korla fragrant pears (Pyrus sinkiangensis Yu). Food Chem 302:6. https://doi.org/10.1016/j.foodchem.2019.125337
Chou KC, Shen HB (2007) Recent progress in protein subcellular location prediction. Anal Biochem 370(1):1–16. https://doi.org/10.1016/j.ab.2007.07.006
Do THT, Martinoia E, Lee Y (2018) Functions of ABC transporters in plant growth and development. Curr Opin Plant Biol 41:32–38. https://doi.org/10.1016/j.pbi.2017.08.003
Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198(1):16–32. https://doi.org/10.1111/nph.12145
Fischer TC, Gosch C, Pfeiffer J, Halbwirth H, Halle C, Stich K, Forkmann G (2007) Flavonoid genes of pear (Pyrus communis). Trees-Struct Funct 21(5):521–529. https://doi.org/10.1007/s00468-007-0145-z
Gao Z, Zhang C, Luo M, Wu Y, Duan S, Li J, Wang L, Song S, Xu W, Wang S, Zhang C, Ma C (2016) Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics 16(23):3025–3041. https://doi.org/10.1002/pmic.201600108
Harris MA, Clark J, Ireland A, Lomax J, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:258–261
Hu H, Liu Y, Shi GL, Liu YP, Wu RJ, Yang AZ, Wang YM, Hua BG, Wang YN (2011) Proteomic analysis of peach endocarp and mesocarp during early fruit development. Physiol Plant 142(4):390–406. https://doi.org/10.1111/j.1399-3054.2011.01479.x
Huang GH, Li T, Li XY, Tan DM, Jiang ZY, Wei Y, Li JC, Wang AD (2014) Comparative transcriptome analysis of climacteric fruit of Chinese pear (Pyrus ussuriensis) reveals new insights into fruit ripening. PLoS ONE 9(9):e107562. https://doi.org/10.1371/journal.pone.0107562
Jansen RC, Nap JP, Mlynarova L (2002) Errors in genomics and proteomics. Nat Biotechnol 20(1):19–19. https://doi.org/10.1038/nbt0102-19b
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27
Katz E, Fon M, Lee YJ, Phinney BS, Sadka A, Blumwald E (2007) The citrus fruit proteome: insights into citrus fruit metabolism. Planta 226(4):989–1005. https://doi.org/10.1007/s00425-007-0545-8
Kim HJ, Lin D, Lee HJ, Li M, Liebler DC (2016) Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays. Mol Cell Proteomics 15(2):682–691. https://doi.org/10.1074/mcp.O115.056713
Li JM, Huang XS, Li LT, Zheng DM, Xue C, Zhang SL, Wu J (2015) Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta 241(6):1363–1379. https://doi.org/10.1007/s00425-015-2263-y
Li M, Zhang K, Long R, Sun Y, Kang J, Zhang T, Cao S (2017) iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot 143:99–114. https://doi.org/10.1016/j.envexpbot.2017.08.010
Lu Y, Ronald PC, Han B, Li J, Zhu J (2020) Rice protein tagging project: a call for international collaborations on genome-wide in-locus tagging of rice proteins. Mol Plant 13:1663–1665. https://doi.org/10.1016/j.molp.2020.11.006
Lü J, Tao X, Yao G, Zhang S, Zhang H (2020) Transcriptome analysis of low- and high-sucrose pear cultivars identifies key regulators of sucrose biosynthesis in fruits. Plant Cell Physiol 61(8):1493–1506. https://doi.org/10.1093/pcp/pcaa068
Martinez-Esteso MJ, Vilella-Anton MT, Pedreno MA, Valero ML, Bru-Martinez R (2013) iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. BMC Plant Biol 13:167. https://doi.org/10.1186/1471-2229-13-167
Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131
Qin G, Liu C, Li J, Qi Y, Gao Z, Zhang X, Yi X, Pan H, Ming R, Xu Y (2020) Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: exploring their relationship with genetic mechanisms of seed coat development. Hortic Res 7:10. https://doi.org/10.1038/s41438-019-0233-4
Rauniyar N (2015) Parallel reaction monitoring: A targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci 16(12):28566–28581. https://doi.org/10.3390/ijms161226120
Renaut J, Hausman J-F, Bassett C, Artlip T, Cauchie H-M, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunuspersica L. Batsch). Tree Genet Genomes 4(4):589–600. https://doi.org/10.1007/s11295-008-0134-4
Reuscher S, Fukao Y, Morimoto R, Otagaki S, Oikawa A, Isuzugawa K, Shiratake K (2016) Quantitative proteomics-based reconstruction and identification of metabolic pathways and membrane transport proteins related to sugar accumulation in developing fruits of pear (Pyrus communis). Plant Cell Physiol 57(3):505–518. https://doi.org/10.1093/pcp/pcw004
Suzuki A, Kanayama Y, Yamaki S (1997) Occurrence of two sucrose synthase isozymes during maturation of Japanese pear fruit. J Am Soc Hortic Sci 122(1):146–146
Tao S, Khanizadeh S, Zhang H, Zhang S (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176(3):413–419. https://doi.org/10.1016/j.plantsci.2008.12.011
Verrier PJ, Bird D, Buria B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13(4):151–159. https://doi.org/10.1016/j.tplants.2008.02.001
Wang JW, Zhou X, Zhou Q, Liu ZY, Sheng L, Wang L, Cheng SC, Ji SJ (2017) Proteomic analysis of peel browning of ‘Nanguo’ pears after low-temperature storage. J Sci Food Agric 97(8):2460–2467. https://doi.org/10.1002/jsfa.8060
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408. https://doi.org/10.1101/gr.144311.112
Wu HX, Jia HM, Ma XW, Wang SB, Yao QS, Xu WT, Zhou YG, Gao ZS, Zhan RL (2014) Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. J Proteom 105:19–30. https://doi.org/10.1016/j.jprot.2014.03.030
Xie M, Huang Y, Zhang Y, Wang X, Yang H, Yu O, Dai W, Fang C (2013) Transcriptome profiling of fruit development and maturation in Chinese white pear (Pyrus bretschneideri Rehd). BMC Genomics 14:823. https://doi.org/10.1186/1471-2164-14-823
Xie Y, Xu L, Wang Y, Fan L, Chen Y, Tang M, Luo X, Liu L (2018) Comparative proteomic analysis provides insight into a complex regulatory network of taproot formation in radish (Raphanussativus L.). Hortic Res 5:51. https://doi.org/10.1038/s41438-018-0057-7
Xu YY, Yao LX, Shen HB (2018) Bioimage-based protein subcellular location prediction: a comprehensive review. Front Comput Sci 12(1):26–39. https://doi.org/10.1007/s11704-016-6309-5
Xue T, Liu P, Zhou Y, Liu K, Yang L, Moritz RL, Yan W, Xu LX (2016) Interleukin-6 induced “acute” phenotypic microenvironment promotes Th1 anti-tumor immunity in cryo-thermal therapy revealed by shotgun and parallel reaction monitoring proteomics. Theranostics 6(6):773–794. https://doi.org/10.7150/thno.14394
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJC, Carr SA, Tabb DL, Coffey RJ, Slebos RJC, Liebler DC, Nci C (2014a) Proteogenomic characterization of human colon and rectal cancer. Nature 513(7518):382–387. https://doi.org/10.1038/nature13438