Quantitative multiparameter prediction of fault-related fractures: a case study of the second member of the Funing Formation in the Jinhu Sag, Subei Basin

Elsevier BV - Tập 15 - Trang 468-483 - 2018
Jing-Shou Liu1,2,3,4, Wen-Long Ding1,2,3,4, Jun-Sheng Dai5, Yang Gu1, Hai-Meng Yang6, Bo Sun7
1School of Energy Resources, China University of Geosciences, Beijing, China
2Key Laboratory for Marine Reservoir Evolution and Hydrocarbon Abundance Mechanism, Ministry of Education, China University of Geosciences, Beijing, China
3Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, China University of Geosciences, Beijing, China
4Key Laboratory for Shale Gas Exploitation and Assessment, Ministry of Land and Resources, China University of Geosciences, Beijing, China
5School of Geosciences, China University of Petroleum, Qingdao, China
6Oil Recovery Plant No. 3, Zhongyuan Oilfield Co. Ltd, SINOPEC, Puyang, China
7CNOOC Energy Technology and Services—Drilling and Production Co., Tianjin, China

Tóm tắt

In this paper, the analysis of faults with different scales and orientations reveals that the distribution of fractures always develops toward a higher degree of similarity with faults, and a method for calculating the multiscale areal fracture density is proposed using fault-fracture self-similarity theory. Based on the fracture parameters observed in cores and thin sections, the initial apertures of multiscale fractures are determined using the constraint method with a skewed distribution. Through calculations and statistical analyses of in situ stresses in combination with physical experiments on rocks, a numerical geomechanical model of the in situ stress field is established. The fracture opening ability under the in situ stress field is subsequently analyzed. Combining the fracture aperture data and areal fracture density at different scales, a calculation model is proposed for the prediction of multiscale and multiperiod fracture parameters, including the fracture porosity, the magnitude and direction of maximum permeability and the flow conductivity. Finally, based on the relationships among fracture aperture, density, and the relative values of fracture porosity and permeability, a fracture development pattern is determined.

Tài liệu tham khảo

Aguilar-Hernández A, Ramírez-Santiago G. Self-similar and self-affine properties of two-dimensional fracture patterns in rocks. Math Geosci. 2010;42:925–54. https://doi.org/10.1007/s11004-010-9279-4. Anders MH, Laubach SE, Scholz CH. Microfractures: a review. J Struct Geol. 2014;69:377–94. https://doi.org/10.1016/j.jsg.2014.05.011. Barton CA, Zoback MD. Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon pass scientific drill hole. J Geophys Res. 1992;97:5181–200. https://doi.org/10.1029/91JB01674. Brogi A. Variation in fracture patterns in damage zones related to strike-slip faults interfering with pre-existing fractures in sandstone (Calcione area, Southern Tuscany, Italy). J Struct Geol. 2011;33:644–61. https://doi.org/10.1016/j.jsg.2010.12.008. Chen S-Q, Zeng L-B, Huang P, Sun S-H, Zhang W-L, Li X-Y. The application study on the multi-scales integrated prediction method to fractured reservoir description. Appl Geophys. 2016;13:80–92. https://doi.org/10.1007/s11770-016-0531-7. Cook AE, Goldberg D, Kleinberg RL. Fracture-controlled gas hydrate systems in the northern Gulf of Mexico. Mar Pet Geol. 2008;25:932–41. https://doi.org/10.1016/j.marpetgeo.2008.01.013. Davarpanah A, Babaie HA. Anisotropy of fractal dimension of normal faults in northern Rocky Mountains: implications for the kinematics of Cenozoic extension and Yellowstone hotspot’s thermal expansion. Tectonophysics. 2013;608:530–44. https://doi.org/10.1016/j.tecto.2013.08.031. Durham WB, Bonner BP. Self-propping and fluid flow in slightly offset joints at high effective pressures. J Geophys Res. 1994;99:9391–9. https://doi.org/10.1029/94JB00242. Fan J, Qu X, Wang C, Lei Q, Cheng L, Yang Z. Natural fracture distribution and a new method predicting effective fractures in tight oil reservoirs in Ordos Basin, NW China. Pet Explor Dev. 2017;43:806–14. Fang W, Jiang H, Li J, Wang Q, Killough J, Li L. A numerical simulation model for multi-scale flow in tight oil reservoirs. Pet Explor Dev. 2017;44:446–53. Feng X, Jessell MW, Amponsah PO, Martin R, Ganne J, Liu D, Batt GE. Effect of strain-weakening on Oligocene–Miocene self-organization of the Australian-Pacific plate boundary fault in southern New Zealand: insights from numerical modelling. J Geodyn. 2016;100:130–43. https://doi.org/10.1016/j.jog.2016.03.002. Gong J, Rossen WR. Modeling flow in naturally fractured reservoirs: effect of fracture aperture distribution on dominant sub-network for flow. Pet Sci. 2017;14:138–54. https://doi.org/10.1007/s12182-016-0132-3. Gudmundsson A, Simmenes TH, Larsen B, Philipp SL. Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. J Struct Geol. 2010;32:1643–55. https://doi.org/10.1016/j.jsg.2009.08.013. Healy JH, Zoback MD. Hydraulic fracturing in situ stress measurements to 2.1 km depth at Cajon Pass, California. Geophys Res Lett. 1988;15:1005–8. https://doi.org/10.1029/GL015i009p01005. Hennings P, Allwardt P, Paul P, Zahm C, Reid R Jr, Alley H, Kirschner R, Lee B, Hough E. Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia. Am Assoc Pet Geol Bull. 2012;96:753–72. https://doi.org/10.1306/08161109084. Hirata T. Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. PAGEOPH. 1989;131:157–70. https://doi.org/10.1007/BF00874485. Hou GT. Fractal analysis of fractures. J Basic Sci Eng. 1994;2:299–305. Ji Z-Z, Dai J-S, Wang B-F, Liu H-K. Multi-parameter quantitative calculation model for tectonic fracture. J China Univ Pet Ed Nat Sci. 2010;34:24–8. Jie WL, Wu LP, Wen CJ, Chen DY. Determination of the present crustal stress state by using acoustic emission in the main borehole of the Chinese continental scientific drilling. Chin Geol. 2005;32:259–64. Jing Z, Willis-Richards J, Watanabe K, Hashida T. A new 3D stochastic model for HDR geothermal reservoir in fractured crystalline rock. In: Proceedings of the 4th international HDR forum, Strasbourg; 1998. Jiu K, Ding W, Huang W, You S, Zhang Y, Zeng W. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, East China. J Pet Sci Eng. 2013a;110:119–31. https://doi.org/10.1016/j.petrol.2013.09.002. Jiu K, Ding W, Huang W, Zhang Y, Zhao S, Hu L. Fractures of lacustrine shale reservoirs, the Zhanhua depression in the Bohai Bay Basin, Eastern China. Mar Pet Geol. 2013b;48:113–23. https://doi.org/10.1016/j.marpetgeo.2013.08.009. Laubach SE, Olson JE, Gross MR. Mechanical and fracture stratigraphy. Am Assoc Pet Geol Bull. 2009;93:1413–26. https://doi.org/10.1306/07270909094. Liu C, Xie Q, Wang G, Zhang C, Wang L, Qi K. Reservoir properties and controlling factors of contact metamorphic zones of the diabase in the northern slope of the Gaoyou Sag, Subei Basin, Eastern China. J Nat Gas Sci Eng. 2016;35:392–411. https://doi.org/10.1016/j.jngse.2016.08.070. Liu J, Dai J, Zou J, Yang H, Wang B, Zhou J. Quantitative prediction of permeability tensor of fractured reservoirs. Oil Gas Geol. 2015;36:1022–9. Liu J, Ding W, Wang R, Yang H, Wang X, Li A. Methodology for quantitative prediction of fracture sealing with a case study of the Lower Cambrian Niutitang Formation in the Cen’gong block in South China. J Pet Sci Eng. 2018a;160:565–81. https://doi.org/10.1016/j.petrol.2017.10.046. Liu J, Ding W, Wang R, Yin S, Yang H, Gu Y. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: a case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong block, South China. Mar Pet Geol. 2017a;84:289–310. https://doi.org/10.1016/j.marpetgeo.2017.04.004. Liu J, Ding W, Yang H, Jiu K, Wang Z, Li A. Quantitative prediction of fractures using the finite element method: a case study of the Lower Silurian Longmaxi formation in northern Guizhou, South China. J Asian Earth Sci. 2018b;154:397–418. https://doi.org/10.1016/j.jseaes.2017.12.038. Liu J, Ding W, Yang H, Wang R, Yin S, Li A. 3D geomechanical modeling and numerical simulation of in situ stress fields in shale reservoirs: a case study of the Lower Cambrian Niutitang Formation in the Cen’gong Block, South China. Tectonophysics. 2017b;712:663–83. Matsumoto N, Yomogida K, Honda S. Fractal analysis of fault systems in Japan and the Philippines. Geophys Res Lett. 1992;19:357–60. https://doi.org/10.1029/92GL00202. Mirzaie A, Bafti SS, Derakhshani R. Fault control on Cu mineralization in the Kerman porphyry copper belt, SE Iran: a fractal analysis. Ore Geol Rev. 2015;71:237–47. https://doi.org/10.1016/j.oregeorev.2015.05.015. Mynatt I, Seyum S, Pollard DD. Fracture initiation, development, and reactivation in folded sedimentary rocks at Raplee Ridge, UT. J Struct Geol. 2009;31:1100–13. https://doi.org/10.1016/j.jsg.2009.06.003. Nelson RA. Geologic analysis of naturally fractured reservoirs. 2nd ed. Houston: Gulf Publishing Professional Publishing; 2001. Neng Y, Qi J, Zhang C, Yang L, Zhang K. Structural evolution of Shigang fault and features of hydrocarbon accumulation in Jinhu Sag. Acta Pet Sin. 2009;30:667–71. Neng Y, Qi J, Zhang C, Zhang K, Ren H, Zheng Y. Structural features of the Jinhu sag in the Subei Basin and its petroleum geological significance. Geotecton Metallog. 2012;36:16–23. Olson JE, Laubach SE, Lander RH. Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis. Am Assoc Pet Geol Bull. 2009;93:1535–49. https://doi.org/10.1306/08110909100. Pan B, Yuan M, Fang C, Liu W, Guo Y, Zhang L. Experiments on acoustic measurement of fractured rocks and application of acoustic logging data to evaluation of fractures. Pet Sci. 2017;14:520–8. https://doi.org/10.1007/s12182-017-0173-2. Prioul R, Jocker J. Fracture characterization at multiple scales using borehole images, sonic logs, and walkaround vertical seismic profile. Am Assoc Pet Geol Bull. 2009;93:1503–16. https://doi.org/10.1306/08250909019. Qin JS. Variation of the permeability of the low-permeability sandstone reservoir under variable confined pressure. J Xian Pet Inst. 2002;17:28–31. Sarp G. Evolution of neotectonic activity of East Anatolian Fault System (EAFS) in Bingöl pull-apart basin, based on fractal dimension and morphometric indices. J Asian Earth Sci. 2014;88:168–77. https://doi.org/10.1016/j.jseaes.2014.03.018. Savage HM, Brodsky EE. Collateral damage: evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. J Geophys Res. 2011;116:B03405. https://doi.org/10.1029/2010JB007665. Seto M, Utagawa M, Katsuyama K, Nag DK, Vutukuri VS. In situ stress determination by acoustic emission technique. Int J Rock Mech Min Sci. 1997;34:281.e1–16. https://doi.org/10.1016/S1365-1609(97)00156-1. Shaw BE. Self-organizing fault systems and self-organizing elastodynamic events on them: geometry and the distribution of sizes of events. Geophys Res Lett. 2004;31:159–80. Soleimani M. Naturally fractured hydrocarbon reservoir simulation by elastic fracture modeling. Pet Sci. 2017;14:286–301. Strijker G, Bertotti G, Luthi SM. Multi-scale fracture network analysis from an outcrop analogue: a case study from the Cambro-Ordovician clastic succession in Petra, Jordan. Mar Pet Geol. 2012;38:104–16. https://doi.org/10.1016/j.marpetgeo.2012.07.003. Walker RJ, Holdsworth RE, Imber J, Ellis D. The development of cavities and clastic infills along fault-related fractures in tertiary basalts on the NE Atlantic margin. J Struct Geol. 2011;33:92–106. https://doi.org/10.1016/j.jsg.2010.12.001. Wang W, Su Y, Zhang Q, Xiang G, Cui S. Performance-based fractal fracture model for complex fracture network simulation. Pet Sci. 2018;15:126–34. https://doi.org/10.1007/s12182-017-0202-1. Wang Y, Li X, Zhao Z, Zhou R, Zhang B, Li G. Contributions of non-tectonic micro-fractures to hydraulic fracturing—a numerical investigation based on FSD model. Sci China Earth Sci. 2016a;59:851–65. Wang Z, Liu C, Zhang Y, Qu H, Yang X, Liu H. A study of fracture development, controlling factor and property modeling of deep-lying tight sandstone in Cretaceous thrust belt K region of Kuqa depression. Acta Pet Sin. 2016b;32:865–76. Willis-Richards J, Watanabe K, Takahashi H. Progress toward a stochastic rock mechanics model of engineered geothermal systems. J Geophys Res. 1996;101:17481–96. https://doi.org/10.1029/96JB00882. Zeng L, Li X-Y. Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang formation in the Ordos Basin, China. Am Assoc Pet Geol Bull. 2009;93:461–77. Zeng L, Su H, Tang X, Peng Y, Gong L. Fractured tight sandstone oil and gas reservoirs: a new play type in the Dongpu depression, Bohai Bay Basin, China. Am Assoc Pet Geol Bull. 2013;97:363–77. https://doi.org/10.1306/09121212057. Zhang S, Wang Y, Shi D, Xu H, Pang X, Li M. Fault-fracture mesh petroleum plays in the Jiyang Superdepression of the Bohai Bay Basin, Eastern China. Mar Pet Geol. 2004;21:651–68. https://doi.org/10.1016/j.marpetgeo.2004.03.007. Zhao WT, Hou GT. Fracture prediction in the tight-oil reservoirs of the Triassic Yanchang formation in the Ordos basin, northern China. Pet Sci. 2017;14:1–23. https://doi.org/10.1007/s12182-016-0141-2.