Quantitative detection of engineered nanoparticles in tissues and organs: An investigation of efficacy and linear dynamic ranges using ICP-AES
Tóm tắt
The absence of effective non-isotopic quantification methods to determine in vivo nanoparticle kinetics and distribution is a key obstacle to the development of various biomedical nanotechnologies. This paper presents a novel adaptation of the established technology of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) to a simple technique intended to address this obstacle. Applicability to three varieties of nanoparticles, (CdSe/ZnS quantum dots (QD), gold nanoparticles, and Fe3O4 nanoparticles) was investigated, and particle detection sensitivity was shown in moles of particles per gram of tissue. Using gold nanoparticles, increased particle size corresponded with lower molar detection thresholds. Minimum linear detection ranges of 2.5 orders of magnitude for QDs and 1.5 orders of magnitude for all three sizes of gold were demonstrated. The detection of the Fe3O4 particles was hampered by the natural presence of Fe2+ in tissues, showing that the technique is not suitable for measuring nanoparticles composed of endogenous elements. These detection levels and ranges demonstrate that this technique is useful for quantifying nanoparticles in excised organs, after in vivo dosing.
Tài liệu tham khảo
Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. Nat Biotechnol 2004;22:969–76.
Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Proc Natl Acad Sci U S A 2003;100:13549–54.
Kim S, Lim YT, Soltesz EG, DeGrand AM, Lee J, Nakayama A, et al. Nat Biotechnol 2004;22:93–7.
Kostarelos K. Adv Colloid Interface Sci 2003;106:147–68.
Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Proc Natl Acad Sci U S A 2006;103:3357–62.
Shenoy D, Little S, Langer R, Amiji M. Pharm Res 2005;22:2107–14.
Hines MA, Guyot-Sionnest P. J Phys Chem B 1996;100:468–71.
Fischer HC, Liu L, Pang KS, Chan WCW. Adv Funct Mater 2006;16:1299–305.
Sun X, Rossin R, Turner JL, Becker ML, Joralemon MJ, Welch MJ, et al. Biomacromolecules 2005;6:2541–54.
Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Nano Lett 2004;4:2163–9.
Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Bioconjug Chem 2004;15:79–86.
Jiang W, Papa E, Fischer H, Mardyani S, Chan WCW. Trends Biotechnol 2004;22:607–9.
Cheng F-Y, Su C-H, Yang Y-S, Yeh C-S, Tsai C-Y, Wu C-L, et al. Biomaterials 2005;26:729–38.
Jiang W, Mardyani S, Fischer H, Chan WCW. Chem Mater 2006;18:872–8.
Li Z, Chen H, Bao H, Gao M. Chem Mater 2004;16:1391.
Frens G. Nat Phys Sci 1973;241:20–2.
Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, et al. Science 1995;267:1629–32.
Yu WW, Qu L, Guo W, Peng X. Chem Mater 2003;15:2854–60.
Chithrani BD, Ghazani AA, Chan WCW. Nano Lett 2006;6:662–8.
Shackelford JF, Alexander W, editors. CRC Materials science and engineering handbook. 3rd ed. Boca Raton, FL: CRC; 2001.
Fearn D’ACB. Ann Rheum Dis 1973;32:34–7.
Saterborg NE. Acta Radiol Ther Phys Biol 1973;12:509–28.
Cook NJ, Wood SA, Zhang Y. J Geochem Explor 1992;46:187–228.
Chao TT, Jenne EA, Heppting LM. US Geological Survey Prof Paper 1968;600D:D16–19.
Krachler M, Radner H, Irgolic KJ. Fresenius’ J Anal Chem 1996;355:120–8.
Ciuffi M, Gentilini G, Franchi-Micheli S, Zilletti L. Neurochem Res 1992;17:1241–6.
Chen LH, Thacker RR. Int J Vitam Nutr Res 1986;56:253–8.
Cempel M. Biol Trace Elem Res 2004;102:198–198.
Herrera AP, Resto O, Briano JG, Rinaldi C. Nanotechnology 2005;16:S618–25.
Maye MM, Han L, Kariuki N, Ly NK, Chan W-B, Luo J, et al. Anal Chim Acta 2003;496:17–27.