MRI định lượng vùng hành não và tủy sống trong bệnh xơ cứng teo cơ một bên: những điều cần lưu ý trong việc dự đoán nhu cầu thông khí không xâm lấn

M. Khamaysa1, M. Lefort1, M. Pélégrini-Issac1, A. Lackmy-Vallée1, M. M. El Mendili2,3, A. Preuilh1, D. Devos4,5, G. Bruneteau6, F. Salachas6, T. Lenglet6,7,8, Md. M. Amador6, N. Le Forestier6,9, A. Hesters6, J. Gonzalez10, A.-S. Rolland5, C. Desnuelle7, M. Chupin11, G. Querin12,13, M. Georges14,15,16, C. Morelot-Panzini10,17, V. Marchand-Pauvert1, P.-F. Pradat1,6,18,19
1Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, Paris, France
2APHM, Hôpital Timone, CEMEREM, Marseille, France
3Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
4Département de Neurologie, Centre Référent SLA, CHU de Lille, Centre LICEND COEN, ACT4-ALS-MND network, Lille, France
5Départment de Pharmacologie Médicale, Université de Lille, INSERM UMRS_1172 LilNCog, CHU de Lille, Centre LICEND COEN, ACT4-ALS-MND network, Lille, France
6APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
7Faculté de Médecine de Nice, Département de Neurologie, Université Cote d’Azur, Nice, France
8Département de Neurophysiologie, APHP, Hôpital Pitié-Salpêtrière, Paris, France
9Département de Recherche en Éthique, EA 1610: Etudes des Sciences et Techniques, Université Paris Sud/Paris Saclay, Paris, France
10Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM UMRS1158, Sorbonne Université, Paris, France
11CATI, Plateforme d’Imagerie Neurologique Multicentrique, Paris, France
12APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre Référent Pour les Maladies Neuromusculaires Rares, Paris, France
13Institut de Myologie, Plateforme d’essais cliniques I-Motion, Hôpital Pitié-Salpêtrière, Paris, France
14Département des Maladies Respiratoires et Soins Intensifs, Centre de Référence pour les Maladies Pulmonaires Rares, Hôpital Universitaire de Dijon-Bourgogne, Dijon, France
15Université de Bourgogne Franche-Comté, Dijon, France
16Centre des sciences du goût et de l’alimentation, UMR 6265 CNRS 1234 Inra, université de Bourgogne Franche-Comté, Dijon, France
17Service de Pneumologie (Département R3S), Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
18Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, UK
19Institut pour la Recherche sur la Moelle Epinière et l’encephale (IRME), Paris, France

Tóm tắt

Các biến chứng hô hấp do sự thoái hóa của các tế bào thần kinh vận động là nguyên nhân chính dẫn đến tử vong trong bệnh xơ cứng teo cơ một bên (ALS). Dự đoán nhu cầu về thông khí không xâm lấn (NIV) trong bệnh ALS là điều quan trọng đối với việc lập kế hoạch chăm sóc trước và thiết kế thử nghiệm lâm sàng. Mục tiêu của nghiên cứu này là đánh giá tiềm năng của MRI định lượng tại vùng hành não và tủy sống để dự đoán nhu cầu cần NIV trong sáu tháng đầu sau chẩn đoán. Bốn mươi mốt bệnh nhân ALS đã trải qua MRI và phương pháp đo hô hấp ngay sau khi chẩn đoán. Nhu cầu về NIV đã được theo dõi theo hướng dẫn y tế của Pháp trong 6 tháng. Hiệu suất của bốn mô hình hồi quy dựa trên: các biến lâm sàng, thể tích cấu trúc hành não, các số đo tủy sống cổ, và các biến kết hợp đã được so sánh để dự đoán nhu cầu về NIV trong khoảng thời gian này. Cả mô hình lâm sàng (R2 = 0,28, AUC = 0,85, AICc = 42,67, BIC = 49,8) và mô hình thể tích cấu trúc hành não (R2 = 0,30, AUC = 0,85, AICc = 40,13, BIC = 46,99) đều cho thấy hiệu suất dự đoán tốt. Ngoài ra, mô hình đo lường tủy sống cổ có hiệu suất tương tự (R2 = 0,338, AUC = 0,87, AICc = 37,99, BIC = 44,49). Đáng chú ý, mô hình kết hợp các yếu tố dự đoán từ cả ba mô hình đã mang lại hiệu suất tốt nhất (R2 = 0,60, AUC = 0,959, AICc = 36,38, BIC = 44,8). Những phát hiện này được hỗ trợ bởi sự tương quan tích cực được quan sát giữa thể tích hành não, diện tích mặt cắt ngang tủy sống cổ (C4/C7) và thể tích phổi đo lường bằng phương pháp đo hô hấp. Nghiên cứu của chúng tôi cho thấy thể tích hành não và diện tích tủy sống là những đo lường đầy hứa hẹn để dự đoán nhu cầu can thiệp hô hấp trong bệnh ALS.

Từ khóa

#Amyotrophic lateral sclerosis #non-invasive ventilation #MRI #brainstem #spinal cord #respiratory complications #predictive modeling

Tài liệu tham khảo

Lechtzin N, Wiener CM, Clawson L et al (2001) Hospitalization in amyotrophic lateral sclerosis, causes, costs, and outcomes. Neurology 56:753–757. https://doi.org/10.1212/WNL.56.6.753 Pinto S, Carvalho M (2014) Breathing new life into treatment advances for respiratory failure in amyotrophic lateral sclerosis patients. Neurodegenerative Disease Manag 4:83–102. https://doi.org/10.2217/nmt.13.74 Pruitt B (2008) Loosening the bonds of restrictive lung disease. Nursing 38:34–39. https://doi.org/10.1097/01.NURSE.0000327490.70569.bc Benditt JO (2002) Respiratory complications of amyotrophic lateral sclerosis. Sem Respirat Crit Care Med 23:239–247. https://doi.org/10.1055/s-2002-33032 Corcia P, Pradat PF, Salachas F et al (2008) Causes of death in a post-mortem series of ALS patients. Amyotroph Lateral Scler 9:59–62. https://doi.org/10.1080/17482960701656940 Pinto S, de Carvalho M (2015) The R of ALSFRS-R: does it really mirror functional respiratory involvement in amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis Frontotemporal Degeneration 16:120–123. https://doi.org/10.3109/21678421.2014.952641 Andersen PM, Abrahams S, Borasio GD et al (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)–revised report of an EFNS task force. Eur J Neurol 19:360–375. https://doi.org/10.1111/j.1468-1331.2011.03501.x Miller RG, Jackson CE, Kasarskis EJ et al (2009) Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 73:1218–1226. https://doi.org/10.1212/WNL.0b013e3181bc0141 Bourke SC, Tomlinson M, Williams TL et al (2006) Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol 5:140–147. https://doi.org/10.1016/s1474-4422(05)70326-4 Leonardis L, Dolenc Grošelj L, Vidmar G (2012) Factors related to respiration influencing survival and respiratory function in patients with amyotrophic lateral sclerosis: a retrospective study. Eur J Neurol 19:1518–1524. https://doi.org/10.1111/j.1468-1331.2012.03754.x Vandoorne E, Vrijsen B, Belge C et al (2016) Noninvasive ventilation in amyotrophic lateral sclerosis: effects on sleep quality and quality of life. Acta Clin Belg 71:389–394. https://doi.org/10.1080/17843286.2016.1173941 Ackrivo J, Hsu JY, Hansen-Flaschen J et al (2021) Noninvasive ventilation use is associated with better survival in amyotrophic lateral sclerosis. Ann Am Thorac Soc 18:486–494. https://doi.org/10.1513/AnnalsATS.202002-169OC Al-Chalabi A, Chiò A, Merrill C et al (2021) Clinical staging in amyotrophic lateral sclerosis: analysis of Edaravone Study 19. J Neurol Neurosurg Psychiatry 92:165–171. https://doi.org/10.1136/jnnp-2020-323271 Fang T, Al Khleifat A, Meurgey JH et al (2018) Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging study. Lancet Neurol 17:416–422. https://doi.org/10.1016/s1474-4422(18)30054-1 Georges M, Perez T, Rabec C et al (2022) Proposals from a French expert panel for respiratory care in ALS patients. Respirat Med Res 81:100901. https://doi.org/10.1016/j.resmer.2022.100901 Ackrivo J, Hansen-Flaschen J, Wileyto EP et al (2019) Development of a prognostic model of respiratory insufficiency or death in amyotrophic lateral sclerosis. Eur Respirat J. https://doi.org/10.1183/13993003.02237-2018 Grolez G, Kyheng M, Lopes R et al (2018) MRI of the cervical spinal cord predicts respiratory dysfunction in ALS. Sci Rep 8:1828. https://doi.org/10.1038/s41598-018-19938-2 Clarke JL, Jackson JH (1867) On a case of muscular atrophy, with disease of the spinal cord and medulla oblongata. Medico-Chirurgical Transact 50(489–98):1. https://doi.org/10.1177/095952876705000122 Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38. https://doi.org/10.1002/ana.23937 Brooks BR, Miller RG, Swash M et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis Frontotemporal Degeneration 1:293–299. https://doi.org/10.1080/146608200300079536 Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21. https://doi.org/10.1016/s0022-510x(99)00210-5 Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021 Iglesias JE, Van Leemput K, Bhatt P et al (2015) Bayesian segmentation of brainstem structures in MRI. Neuroimage 113:184–195. https://doi.org/10.1016/j.neuroimage.2015.02.065 De Leener B, Lévy S, Dupont SM et al (2017) SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145:24–43. https://doi.org/10.1016/j.neuroimage.2016.10.009 Fonov VS, Le Troter A, Taso M et al (2014) Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. Neuroimage 102(Pt 2):817–827. https://doi.org/10.1016/j.neuroimage.2014.08.057 Deng X, Hao Y, Xiao B et al (2020) Prognostic factors of key outcomes for motor neuron disease in a multiracial Asian population. J Clin Neurosci 72:63–67. https://doi.org/10.1016/j.jocn.2020.01.030 De Carvalho M, Swash M, Pinto S (2019) Diaphragmatic neurophysiology and respiratory markers in ALS. Front Neurol 10:143. https://doi.org/10.3389/fneur.2019.00143 Bede P, Hardiman O (2014) Lessons of ALS imaging: pitfalls and future directions—a critical review. NeuroImage Clinical 4:436–443. https://doi.org/10.1016/j.nicl.2014.02.011 Paquin M, El Mendili MM, Gros C et al (2018) Spinal cord gray matter atrophy in amyotrophic lateral sclerosis. Am J Neuroradiol 39:184–192. https://doi.org/10.3174/ajnr.A5427 Bede P, Chipika RH, Finegan E et al (2019) Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: a longitudinal neuroimaging study. NeuroImage Clinical 24:102054. https://doi.org/10.1016/j.nicl.2019.102054 Milella G, Introna A, Ghirelli A et al (2022) Medulla oblongata volume as a promising predictor of survival in amyotrophic lateral sclerosis. NeuroImage Clin 34:103015. https://doi.org/10.1016/j.nicl.2022.103015 Li H, Zhang Q, Duan Q et al (2021) Brainstem involvement in amyotrophic lateral sclerosis: a combined structural and diffusion tensor MRI analysis. Front Neurosci 15:675444. https://doi.org/10.3389/fnins.2021.675444 Tan EL, Bede P, Pradat PF (2023) Promises and pitfalls of imaging-based biomarkers in motor neuron diseases. Curr Opin Neurol 36:346–352. https://doi.org/10.1097/wco.0000000000001169 Witzel S, Frauhammer F, Steinacker P et al (2021) Neurofilament light and heterogeneity of disease progression in amyotrophic lateral sclerosis: development and validation of a prediction model to improve interventional trials. Translational Neurodegeneration 10:31. https://doi.org/10.1186/s40035-021-00257-y Meyer T, Schumann P, Weydt P et al (2023) Neurofilament light-chain response during therapy with antisense oligonucleotide tofersen in SOD1-related ALS: treatment experience in clinical practice. Muscle Nerve 67:515–521. https://doi.org/10.1002/mus.27818 Miller TM, Cudkowicz ME, Genge A et al (2022) Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 387:1099–1110. https://doi.org/10.1056/NEJMoa2204705 Blasco H, Vourc’h P, Pradat PF et al (2016) Further development of biomarkers in amyotrophic lateral sclerosis. Expert Rev Neurother 16:853–868. https://doi.org/10.1080/14737159.2016.1199277 Schuster C, Hardiman O, Bede P (2017) Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol 17:73. https://doi.org/10.1186/s12883-017-0854-x Khamaysa M, Lefort M, Pélégrini-Issac M et al (2023) Comparison of spinal magnetic resonance imaging and classical clinical factors in predicting motor capacity in amyotrophic lateral sclerosis. J Neurol 270:3885–3895. https://doi.org/10.1007/s00415-023-11727-w El Mendili MM, Verschueren A, Ranjeva JP et al (2023) Association between brain and upper cervical spinal cord atrophy assessed by MRI and disease aggressiveness in amyotrophic lateral sclerosis. Neuroradiology. https://doi.org/10.1007/s00234-023-03191-0 Manera U, Torrieri MC, Moglia C et al (2021) Arterial blood gas analysis: base excess and carbonate are predictive of noninvasive ventilation adaptation and survival in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 22:33–39. https://doi.org/10.1080/21678421.2021.1887263