Quantitative Proteomics of Human Blood Exosomes

Pleiades Publishing Ltd - Tập 13 - Trang 132-139 - 2019
N. A. Shushkova1, N. E. Vavilov1, S. E. Novikova1, T. E. Farafonova1, O. V. Tikhonova1, P.-C. Liao2, V. G. Zgoda1
1Institute of Biomedical Chemistry (IBMC), Moscow, Russia
2National Cheng Kung University, Tainan, Taiwan

Tóm tắt

Exosomes are extracellular membrane vesicles secreted by cells into biological fluids. The membrane of exosomes protects their contents from degradation and contains markers of the cells producing them. Almost all cells of the body produce exosomes, however, tumor cells secrete them more intensively. However, initial stages of the study of exosome functions and identification of tumor protein biomarkers in their composition meet a serious problem of isolating pure, characterized exosome preparations. In this study we have performed quantitative proteomic analysis of human serum exosomes isolated using differential ultracentrifugation, ultracentrifugation in a sucrose cushion, or sedimentation of a serum exosomal fraction by means of the commercial Exosome Isolation Kit (Invitrogen from ThermoFisher Scientific Baltics, UAB, Lithuania). The protein composition of the obtained exosome samples was determined by mass spectrometric methods of selected reactions monitoring (SRM) and shotgun proteomic analysis. The resultant preparations were characterized by the content of the main markers (CD9, CD82, HSPA8, CD63). In the exosomes isolated from serum of healthy volunteers samples by ultracentrifugation in the sucrose cushion, the content of the above mentioned markers was determined as 32.85, 15.59, 6.07 fmol/μg of total protein, respectively. It was shown that the centrifugation method with the sucrose cushion was optimal for the isolation of exosomes. The other methods, including the commercial kit, did not yield positive results. Thus, results of this study have shown that the centrifugation using the sucrose cushion is the most optimal for serum exosome isolation.

Tài liệu tham khảo

Popesko, B., Novák, P., Papadaki, S., and Hrabec, D., Transformations in Business and Economics, 2015, vol. 14, pp. 373−388. Shen, H., Che, K., Cong, L., Dong, W., Zhang, T., Liu, Q., and Du, J., Oncotarget, 2017, vol. 8, pp. 36 812–36 823. https://doi.org/10.18632/oncotarget.15972 Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., Perdicchio, M., Marino, M.L., Federici, C., Iessi, E., Brambilla, D., Venturi, G., Lozupone, F., Santinami, M., Huber, V., Maio, M., Rivoltini, L., and Fais, S., PLoS One, 2009, vol. 4, e5219. https://doi.org/10.1371/journal.pone.0005219 Rolfo, C., Castiglia, M., Hong, D., Alessandro, R., Mertens, I., Baggerman, G., Zwaenepoel, K., Gil-Bazo, I., Passiglia, F., Carreca, A.P., Taverna, S., Vento, R., Santini, D., Peeters, M., Russo, A., and Pauwels, P., Biochim. Biophys. Acta, 2014, vol. 1846, pp. 539–546. https://doi.org/10.1016/j.bbcan.2014.10.001 Carretero-González, A., Otero, I., Carril-Ajuria, L., de Velasco, G., and Manso, L., Cancer Microenviron., 2018, vol. 11, pp. 13–21. https://doi.org/10.1007/s12307-018-0211-7 Pultz, D.A.B., Cordero da Luz, A.F., Faria, S.S., Ferreira de Souza, P.F.L., Tavares, C.B.P., Goulart, A.V., Fontes, W., Goulart, R.L., and Barbosa Silva, J.M., Int. J. Cancer, 2017, vol. 140, pp. 2397–2407. https://doi.org/10.1002/ijc.30595 InvitrogenTM. User Guide: Total Exosome Isolation (from serum), 2012. (June). https://www.invitrogen.com Hood, C.A., Fuentes, G., Patel, H., Page, K., Menakuru, M., and Park, J.H., J. Pept. Sci., 2008, vol. 14, pp. 97–101. Vaudel, M., Barsnes, H., Berven, F.S., Sickmann, A., and Martens, L., Proteomics, 2011, vol. 11, pp. 996–999. https://doi.org/10.1002/pmic.201000595 Momen-Heravi, F., Balaj, L., Alian, S., Mantel, P.Y., Halleck, A.E., Trachtenberg, A.J., Soria, C.E., Oquin, S., Bonebreak, C.M., Saracoglu, E., Skog, J., and Kuo, W.P., Biol. Chem., 2013, vol. 394, pp. 1253–1262. https://doi.org/10.1515/hsz-2013-0141 Mayer, M.P. and Bukau, B., Cell Mol. Life Sci., 2005, vol. 62, pp. 670–684. Kopylov, A.T., Lisitsa, A.V., and Zgoda, V.G., Biomedical Chemistry: Research and Methods, 2018, vol. 1, 119. https://doi.org/10.18097/BMCRM00006 Clark, D.J., Fondrie, W.E., Yang, A., and Mao, L., J. Proteomics, 2016, vol. 133, pp. 161–169. https://doi.org/10.1016/j.jprot.2015.12.023 Lenassi, M., Cagney, G., Liao, M., Vaupotic, T., Bartholomeeusen, K., Cheng, Y., Krogan, N.J., Plemenitas, A., and Peterlin, B.M., Traffic, 2010, vol. 11, pp. 110–122. https://doi.org/10.1111/j.1600-0854.2009.01006.x Bobrie, A., Colombo, M., Krumeich, S., Raposo, G., and Théry, C., J. Extracell Vesicles, 2012, vol. 1, pp. 1–11. https://doi.org/10.3402/jev.v1i0.18397 Caradec, J., Kharmate, G., Hosseini-Beheshti, E., Adomat, H., Gleave, M., and Guns, E., Clin. Biochem., 2014, vol. 47, pp. 1286–1292. https://doi.org/10.1016/j.clinbiochem.2014.06.011 Helwa, I., Cai, J., Drewry, M.D., Zimmerman, A., Dinkins, M.B., Khaled, M.L., Seremwe, M., Dismuke, W.M., Bieberich, E., Stamer, W.D., Hamrick, M.W., and Liu, Y., PLoS One, 2017, vol. 12, e0170628. https://doi.org/10.1371/journal.pone.0170628 Ioachim, E., Michael, M.C., Salmas, M., Damala, K., Tsanou, E., Michael, M.M., Malamou-Mitsi, V., and Stavropoulos, N.E., BMC Cancer, 2006, vol. 6, 140.